
© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 1 of 1

WS-I Testing Tools version 1.1 User Guide

Document Type:
Technical User Guide

Editors:
 Jacques Durand, Fujitsu

Brian Macker, Computer Associates
 Shrikant Wagh, Optimyz Software, Inc.
 Simeon Greene, Oracle Corporation
 Keith Stobie, Microsoft Corporation
 David Lauzon, IBM

Last Edit Date:
11/10/2004 11:00:00 PM

Document Status:
Version 1.1

This document is a Working Group Draft; it has been accepted by the Working Group as
reflecting the current state of discussions. It is a work in progress, and should not be
considered authoritative or final; other documents may supersede this document.

Notice
The material contained herein is not a license, either expressly or impliedly, to any intellectual
property owned or controlled by any of the authors or developers of this material or WS-I. The
material contained herein is provided on an "AS IS" basis and to the maximum extent permitted
by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors
and developers of this material and WS-I hereby disclaim all other warranties and conditions,
either express, implied or statutory, including, but not limited to, any (if any) implied warranties,
duties or conditions of  merchantability, of fitness for a particular purpose, of accuracy or
completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of
negligence. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET
ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-
INFRINGEMENT WITH REGARD TO THIS MATERIAL.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR WS-I BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE
GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY
INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES
WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN
ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 2 of 2

MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE
POSSIBILITY OF SUCH DAMAGES.

License Information
Use of this WS-I Material is governed by the WS-I Test License at http://www.ws-
i.org/licenses/test_license_draftobj.htm.  By downloading these files, you agree to the terms of
this license.

Feedback
The Web Services-Interoperability Organization (WS-I) would like to receive input, suggestions
and other feedback ("Feedback") on this work from a wide variety of industry participants to
improve its quality over time.

By sending email, or otherwise communicating with WS-I, you (on behalf of yourself if you are
an individual, and your company if you are providing Feedback on behalf of the company) will
be deemed to have granted to WS-I, the members of WS-I, and other parties that have access to
your Feedback, a non-exclusive, non-transferable, worldwide, perpetual, irrevocable, royalty-free
license to use, disclose, copy, license, modify, sublicense or otherwise distribute and exploit in
any manner whatsoever the Feedback you provide regarding the work. You acknowledge that
you have no expectation of confidentiality with respect to any Feedback you provide. You
represent and warrant that you have rights to provide this Feedback, and if you are providing
Feedback on behalf of a company, you represent and warrant that you have the rights to provide
Feedback on behalf of your company. You also acknowledge that WS-I is not required to review,
discuss, use, consider or in any way incorporate your Feedback into future versions of its work.
If WS-I does incorporate some or all of your Feedback in a future version of the work, it may,
but is not obligated to include your name (or, if you are identified as acting on behalf of your
company, the name of your company) on a list of contributors to the work. If the foregoing is not
acceptable to you and any company on whose behalf you are acting, please do not provide any
Feedback.

Feedback on this document should be directed to wsi-test-comments@ws-i.org.

Acknowledgement from the Editors: Our thanks to all the members of the Testing Work Group
who developed the tool specifications and contributed valuable input and comments on this User
Guide.

http://www.ws-
mailto:wsi-test-comments@ws-i.org


© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 3 of 3

Table of Contents:

1 Overview ............................................................................................................................ 4
1.1 General Testing Process and Architecture.................................................................. 4

2 Installation.......................................................................................................................... 6
2.1 System Requirements ................................................................................................ 6
2.2 Installation Procedure ................................................................................................. 6

2.2.1 C# Version.......................................................................................................... 6
2.2.2 Java Version ....................................................................................................... 6

3 WS-I Monitor Tool .............................................................................................................. 7
3.1 Brief Description ......................................................................................................... 7
3.2 Configuration Setup.................................................................................................... 7
3.3 Sample Configuration File......................................................................................... 10
3.4 WS-I Monitor Tool Command Line Syntax ................................................................ 12

3.4.1 C# WS-I Monitor Tool Command Line Options ................................................. 12
3.4.2 Java WS-I Monitor Tool Command Line Options............................................... 12
3.4.3 Executing the C# Version of WS-I Monitor Tool ................................................ 13
3.4.4 Executing the Java Version of WS-I Monitor Tool ............................................. 13
3.4.5 How to Deploy the Monitor................................................................................ 14
3.4.6 The Monitor Output ........................................................................................... 14
3.4.7 Message Log File Description........................................................................... 15
3.4.8 Sample Message Log File................................................................................. 18
3.4.9 Viewing the HTML version of the Message Log File.......................................... 22

4 WS-I Analyzer Tool .......................................................................................................... 23
4.1 Brief Description ....................................................................................................... 23
4.2 WS-I Analyzer Processing Rules .............................................................................. 23
4.3 Configuration Setup.................................................................................................. 26
4.4 Sample Configuration Files....................................................................................... 33

4.4.1 Sample configuration file that uses direct WSDL reference............................... 34
4.4.2 Sample configuration file that uses serviceLocation element............................. 35
4.4.3 Sample configuration file that uses UDDI reference .......................................... 36

4.5 WS-I Analyzer Tool Command Line Syntax .............................................................. 37
4.5.1 C# WS-I Analyzer Tool Command Line Options................................................ 38
4.5.2 Java WS-I Analyzer Tool Command Line Options............................................. 38
4.5.3 Executing the C# Version of WS-I Analyzer Tool .............................................. 39
4.5.4 Executing the Java Version of WS-I Analyzer Tool ........................................... 40

5 The Test Assertions Document (TAD).............................................................................. 41
5.1 Test Assertion representation ................................................................................... 41
5.2 TAD Terminologies and Definitions........................................................................... 41
5.3 How the Test Assertions are processed.................................................................... 43
5.4 Viewing the HTML version of Test Assertion Document (TAD) ................................. 45

6 The Profile Conformance Report ...................................................................................... 46
6.1 Definitions................................................................................................................. 46
6.2 Elements of a Report ................................................................................................ 47
6.3 Example of Conformance Report in XML Format...................................................... 51
6.4 Conformance Report In HTML Format...................................................................... 55

7 Frequently Asked Questions (FAQ).................................................................................. 60



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 4 of 4

1 Overview
For questions like:

• Can testing tools certify that a Web Service is conforming to the Profile?
• Can testing tools verify all the requirements of a Profile?
• Are there some restrictions in using the testing tools?

See the 7 Frequently Asked Questions (FAQ) section.

1.1 General Testing Process and Architecture

The Web Services Interoperability Organization (WS-I) has developed testing tools that evaluate
Web services conformance to Profiles.  These tools test Web service implementations using a
non-intrusive, black box approach. The tools focus is on the interaction between a Web service
and user applications.

Figure 1 - Testing Tools Architecture.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 5 of 5

The testing infrastructure is comprised of the Monitor and the Analyzer (see Figure 1) and a
variety of supporting files:

• Monitor – This is both a message capture and logging tool. The interceptor captures the
messages and the logger re-formats them and stores them for later analysis in the message
log. The monitor is implemented using a man in the middle approach to intercept and record
messages.

• Analyzer – This is an analysis tool that verifies the conformance of Web Services artifacts to
Profiles. For example, it analyzes the messages sent to and from a Web service, after these
have been stored in the message log by the Monitor.

• Configuration Files – These are XML files used to control the execution of the Testing
Tools:

o Monitor Configuration File – controls the execution of the monitor
o Analyzer Configuration File – controls the execution of the analyzer
o Test Assertion Document – defines the test assertions that will be processed by the

analyzer

Other files or data artifacts will be accessed, which are not part of the test framework, but
dependent on the Web Service to be tested:

• Web Service artifacts –  these inputs to the Analyzer are target material for testing, and will
be reported on:

o Message Log – contains the monitoring trace of messages captured at transport level.
o WSDL definitions - contains the definitions related to the Web Service
o UDDI entries - contains references to Web Service definitions, as well as bindings.

• Generated Files – These are XML files produced by Testing Tools, that are specific to the
Web Service being tested:

o Message Log – (also a “Web Service artifact”)
• Conformance Report – contains the complete conformance analysis from the specified

inputs.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 6 of 6

2 Installation

2.1 System Requirements

Both the Monitor and Analyzer tools are available in C# and Java versions from the WS-I web
site. The requirements for each are listed as follows:

• C# - The Microsoft .NET Framework release 1.1 must be installed. This can be obtained
from the Microsoft download web site at: http://www.microsoft.com/downloads

• Java – The Java 2 Runtime Environment release 1.3.1 or later must be installed.  This
can be obtained from the Java web site at http://java.sun.com/j2se/downloads.html

2.2 Installation Procedure
The WSI Test tools are available for download from www.ws-i.org.

2.2.1 C# Version
Unzip the installation package into a working directory.

2.2.2 Java Version
Unzip the installation package into a working directory. Before running any of the tools, you
must set the WSI_HOME environment variable to the location of the installed files.

 Example: set WSI_HOME=C:\wsi-test-tools

In the example above, c:\wsi-test-tools is the installation directory for the WS-I testing tools

http://www.microsoft.com/downloads
http://java.sun.com/j2se/downloads.html
http://www.ws-i.org


© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 7 of 7

3 WS-I Monitor Tool

3.1 Brief Description

The WS-I Monitor Tool is implemented with a “man in the middle” approach so that it can
intercept all the SOAP messages between the consumer (Web Services Client) and the instance
(Web Services).  The monitor configuration file controls the operation of the monitor and defines
the parameters to ensure the SOAP messages are properly routed. In this release, WS-I monitor
and analyzer tools are designed to handle HTTP traffic only. The complete WS-I testing tools
specifications are available at www.ws-i.org.

3.2 Configuration Setup

The user can specify the WS-I Monitor tool configuration using the monitorConfig.xml file. The
monitorConfig.xml file contains the list of configuration options for WS-I Monitor Tool.
monitorConfig.xsd file describes the XML schema for the WS-I Monitor tool configuration file
and this schema file can be located in <wsi-test-tools-home>\common\schemas folder.
Following table describes the list of available options and their usage in monitorConfig.xml file.

Element Description Usage

configuration This is the root element for the
configuration file. This root element
encloses all configuration parameters for the
WS-I Monitor Tool.

Mandatory

comment Provides descriptive information about the
monitor configuration document. It does not
affect the execution of the Monitor Tool.
The element can be used as the immediate
child of <configuration> and/or <redirect>
element.

Optional

logFile Using this element the user can specify the
location of the log file that will contains the
SOAP messages which then can be
processed by the WS-I Analyzer tool.

Mandatory

logFile[@replace]  “replace” is an attribute of “logFile” element.
Using this attribute the user can specify
whether the existing log file specified by the
value of “location” attribute can be
overwritten. The allowed values for “replace”
attribute are as follows:

• true

Optional
Default value – “false”

http://www.ws-i.org


© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 8 of 8

Element Description Usage
Indicates that the already existing log file
can be replaced.

• false
Indicates that if the log filename with the
same name specified by the value of
“location” attribute already exists then it
cannot be replaced.  If the values is set to
“false” then the WS-I Monitor tool will
terminate with an error message, if the log
file with specified name already exists.

logFile[@location]  “location” is an attribute of “logFile” element.
Using this attribute the user can specify the
location and the filename of the log file. The
user can specify the filename as absolute path
or the path relative to the current folder.

Mandatory

addStyleSheet The user can specify the appropriate values
for the attributes of this element to indicate
whether the style sheet reference should be
included in the log file which contains the
SOAP messages intercepted by WS-I
Monitor tool.
This is an optional element and if this
element is not specified in the configuration
file, then the following comment line will
be inserted in the log file after the XML
declaration statement:

<!-- ?xml-stylesheet type="text/xsl"
href="..\common\xsl\traceLog.xsl"?  -->

Optional

addStyleSheet[@href] “href” is an attribute of “addStyleSheet”
element.  Using this attribute the user can
specify the location and the filename of the
style sheet. The user can specify the filename
as absolute path or the path relative to the
current folder. The specified style sheet will be
used to render the report in HTML format.

Mandatory

addStyleSheet[@type]  “type” is an attribute of “addStyleSheet”
element.  Using this attribute the user can
specify the content type for the style sheet.

Optional
Default value – “text/xsl”

addStyleSheet[@title]  “title” is an attribute of “addStyleSheet”
element.  Using this attribute the user can
specify the brief description or advisory
information about the style sheet.

Optional



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 9 of 9

Element Description Usage
addStyleSheet[@medi
a]

“media” is an attribute of “addStyleSheet”
element.  Using this attribute the user can
specify the intended destination medium for
the style sheet.

Optional

addStyleSheet[@char
set]

“charset” is an attribute of “addStyleSheet”
element.  Using this attribute, the user can
specify the character encoding for the style
sheet.

Optional

addStyleSheet[@alter
nate]

“alternate” is an attribute of “addStyleSheet”
element.  The user can specify the appropriate
value for this attribute to indicate the use of
alternate style sheet. The allowed values for
“alternate” attribute are as follows:

• true
Indicates that the use of alternate style
sheet.

• false
Indicates that the alternate style sheet is
not used.

Optional

logDuration Using this element the user can specify the
number of seconds for which the WS-I
Monitor tool will accept the new client
connections. After this specified duration
the WS-I Monitor tool will stop accepting
any new clients and write the intercepted
messages to the log file.

Mandatory

cleanupTimeoutSeco
nds

Using this element the user can specify the
time interval (in terms of seconds) to allow
the existing communication to be over.
Once logDuration time ends, the monitor
begins to shutdown and accepts no new
connections. To allow any existing
conversations to finish, the monitor leaves
the active ports alive for the number of
seconds set in cleanupTimeoutSeconds.
When this period ends, all ports are shut
down.

Mandatory

manInTheMiddle This is the wrapper element for all
<redirect> elements and contains the
configuration information for one or more
manInTheMiddle port monitors.

Optional

redirect The <redirect> elements define where the
monitor will listen for traffic and how it will

Mandatory



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 10 of 10

Element Description Usage
forward that traffic. The user can specify
one or more redirects as desired.

listenPort Using this element the user can specify the
listen port for the manInTheMiddle.

Mandatory

schemeAndHostPort Using this element the user can specify the
redirect URL for the received messages.
When traffic is received on listenPort, it is
sent to the URL specified by
schemeAndHostPort element.  The URL
can be specified as:
• http://<host>:<port>
A subset form of an HTTP URL as
specified in RFC1738 [2], section 3.3:
http://<host>:<port>/<path>?<searchpart
>
The port is optional and defaults to 80.

Mandatory

maxConnections Using this element the user can specify the
maximum number of connections that the
port will queue up before it begins refusing
connections.

Mandatory

readTimeoutSeconds Using this element the user can specify how
long a listenPort should wait for a read
operation before assuming that the
connection timed out and releasing the
connection. This timeout occurs when no
data has been received by the client or
server during this duration. If either end
does send data, then neither connection is
assumed to have timed out.

Mandatory

3.3 Sample Configuration File
This section illustrates the sample configuration file for usage of WS-I Monitor Tool.
The sample configuration file explained in this section assumes the following scenario:
• The user is intended to monitor the messages for two web services deployed at location URL

http://www.coldrooster.com port 80 and http://www.tempuri.com port 80 respectively.
• The above mentioned two web services URL and ports are mapped the monitor URL and the

monitor ports used for these two web services are port 9090 and port 8080 respectively.
• In order to insert the monitor between the requestor and web service some method of

redirection is required.  In this example it is assumed that the requestor is modified to redirect
its request to the appropriate monitor ports.

The sample configuration file for WS-I Monitor tool for the above mentioned scenarios appears
as listed in Fig. #2.

http://www.coldrooster.com
http://www.tempuri.com


© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 11 of 11

<?xml version="1.0" encoding="utf-8" ?>
<wsi-monConfig:configuration

    xmlns:wsi-monConfig=
        "http://www.ws-i.org/testing/2003/03/monitorConfig/">
    <wsi-monConfig:comment>This is a comment</wsi-monConfig:comment>
    <wsi-monConfig:logFile replace="true" location=”c:\traceLog.xml”>
  <wsi- monConfig:addStyleSheet href="../../common/xsl/log.xsl"/>
    </wsi-monConfig:logFile>
    <wsi-monConfig:logDuration>900</wsi-monConfig:logDuration>
    <wsi-monConfig:cleanupTimeoutSeconds>120</wsi-monConfig:cleanupTimeoutSeconds>
    <wsi-monConfig:manInTheMiddle>
        <wsi-monConfig:redirect>
            <wsi-monConfig:comment>Redirect for port 9090</wsi-monConfig:comment>
            <wsi-monConfig:listenPort>9090</wsi-monConfig:listenPort>
            <wsi-monConfig:schemeAndHostPort>http://www.coldrooster.com</wsi-
monConfig:schemeAndHostPort>
            <wsi-monConfig:maxConnections>1000</wsi-monConfig:maxConnections>
            <wsi-monConfig:readTimeoutSeconds>30</wsi-monConfig:readTimeoutSeconds>
        </wsi-monConfig:redirect>
        <wsi-monConfig:redirect>
            <wsi-monConfig:comment> Redirect for port 8080</wsi-monConfig:comment>
            <wsi-monConfig:listenPort>8080</wsi-monConfig:listenPort>
            <wsi-monConfig:schemeAndHostPort
               >http://www.tempuri.org:80</wsi-monConfig:schemeAndHostPort>
            <wsi-monConfig:maxConnections
                >1000</wsi-monConfig:maxConnections>
            <wsi-monConfig:readTimeoutSeconds
                >30</wsi-monConfig:readTimeoutSeconds>
        </wsi-monConfig:redirect>
    </wsi-monConfig:manInTheMiddle>
</wsi-monConfig:configuration>

Figure 2 - Sample Configuration file for WS-I Monitor tool.

The sample configuration file listed in Fig #2 instructs the monitor to perform the following
tasks:

1. Log all messages to a file named c:\traceLog.xml. Replacing any existing file with the
same name.

2. Set the duration of the testing session to 900 seconds
3. Run a man in the middle listener.
4. Open up listener connections on port: 9090 and 8080.
5. Forward any traffic received on port 9090 to www.coldrooster.com, port 80.

Note: port 80 is the default and is not specified

http://www.coldrooster.com
http://www.tempuri.org:80
http://www.coldrooster.com


© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 12 of 12

6. Forward any traffic received on port 8080 to www.tempuri.org, port 80.
7. Allow up to 1000 connections on ports 9090 and 8080.
8. Set the timeout value for a connection for ports 9090 and 8080 to 30 seconds.

3.4 WS-I Monitor Tool Command Line Syntax
Apart from configuration file, the user can also use the command line options for WS-I Monitor
tool. All command line options override the options that are specified in the configuration file.
Both – C# and Java – version of WS-I Monitor tools  supports –config options, while Java
version of WS-I Monitor tool support additional options.

The simplified command line syntax to invoke the WS-I Monitor tool is as follows:

Monitor -config <configFile>

3.4.1 C# WS-I Monitor Tool Command Line Options

The command line options for C# version of WS-I Monitor tool are described in detail in the
following table:

Sr
No Option Description

1 -config The user can specify the configuration file to be used by the
WS-I Monitor tool

3.4.2 Java WS-I Monitor Tool Command Line Options

The command line options for Java version of WS-I Monitor tool are described in detail in the
following table:

Sr
No Option Description

1 -config or -c The user can specify the configuration file to be used
by the WS-I Monitor tool.

2 -verbose or -v Display diagnostic messages on the console.

3 -comments or -C
Using this option the user can provides descriptive
information about the monitor configuration document.
It does not affect the execution of the Monitor Tool.

4 -logFile or -l

Using this option the user can specify the location of
the log file that will contains the SOAP messages
which then can be processed by the WS-I Analyzer
tool.

5 -replace or -r
Using this option the user can specify whether the
existing log file specified by the value of “location”
attribute can be overwritten.

http://www.tempuri.org


© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 13 of 13

Sr
No Option Description

6 -logDuration or -d

Using this option the user can specify the number of
seconds for which the WS-I Monitor tool will accept
the new client connections. After this specified
duration the WS-I Monitor tool will stop accepting any
new clients and write the intercepted messages to the
log file.

7 -timeout or -t

Using this option the user can specify how long a
listenPort should wait for a read operation before
assuming that the connection timed out and releasing
the connection. This timeout occurs when no data has
been received by the client or server during this
duration. If either end does send data, then neither
connection is assumed to have timed out.

3.4.3 Executing the C# Version of WS-I Monitor Tool

To run the C# version of WS-I Monitor tool, change directory to the
<wsi-test-tool-home>\cs\bin folder and execute the following command:

Monitor [-config < configFilename >]

Example:
cd c:\wsi-test-tools\cs\bin
Monitor -config ..\samples\monitorConfig.xml

Note: If no configuration file is defined, the WS-I Monitor tool will default to
monitorConfig.xml file in the current directory. In order to exit the WS-I Monitor tool, the user
must either wait for the logDuration time to expire or manually exit the WS-I Monitor tool to
properly close and complete the monitor log file. To manually exit the application, press <Ctrl-
C> in the command prompt from where WS-I Monitor tool is running.

3.4.4 Executing the Java Version of WS-I Monitor Tool
To run the Java version of WS-I Monitor tool, change directory to the
<wsi-test-tool-home>\java\bin folder and execute the following command:

Monitor [-config < configFilename >]

Example:
cd C:\wsi-test-tools\java\bin
Monitor -config ..\samples\monitorConfig.xml

Note: In order to exit the WS-I Monitor tool, the user must either wait for the logDuration time
to expire or manually exit the WS-I Monitor tool to properly close and complete the monitor log



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 14 of 14

file. To manually exit the application, press <Ctrl-C> in the command prompt from where WS-I
Monitor tool is running.

3.4.5 How to Deploy the Monitor
The monitor uses the man-in-the-middle approach to monitor and record SOAP messages
between clients and services.  In order to integrate the monitor with a deployed Web Service, one
of the three following techniques should be used:

1. Alter the Requestor
2. Move the Service
3. Alter the UDDI Registry entry

• Alter the Requestor: This technique involves altering the requestor, or client, to direct
its requests to an alternative URL and/or port. This approach is usually the easiest where
a testing program or test harness is being used to drive the server.  In this case no
modifications are required to the server, and the monitor can be used to test both internal
and external Web services.

• Move the Service: In this case the service is moved to new location and/or port, and the
monitor takes its place. This approach is best used where the client code cannot be
modified, and the service can be conveniently modified or relocated.

• Alter the UDDI Registry entry: For applications where the connection (end point) is
dynamically established through a UDDI registry, the monitor can be integrated by
updating the UDDI entry.  In this case the updated UDDI entry can refer to a WSDL
definition where the address location in the service name has been updated to refer to the
monitor, or, if the endpoint is specified in the accessPoint of the bindingTemplate, then
the user can just modify this accessPoint.

3.4.6 The Monitor Output

WS-I Monitor tool logs all intercepted messages and the configuration parameters used, to a
XML file. The monitor writes out each message pair (request and response) as it is processed,
and the final </log> tag is not added until the monitor exits. When using the WS-I Monitor tool,
you must terminate the monitor before you can view the log file. To manually exit,
press <Ctrl-C>.

It is important to note that the WS-I Monitor logs the HTTP conversation only, and makes no
assumptions about the content of an HTTP body. WS-I Monitor does not check whether a
message element contains a SOAP message. If a message contains an HTTP Content-Length
header, it will not record the message until the number of bytes specified in that header is
received. This feature is included primarily to deal with HTTP messages that issue an HTTP
100-continue request separate from sending the message body. (It is legal to send the HTTP
headers independently of the message body with a HTTP Expect Header of 100-continue.)



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 15 of 15

In the following sections the log files generated by WS-I Monitor tool will be explained in detail
with examples.

3.4.7 Message Log File Description

The log file created by WS-I Monitor tool contains the list of configuration options for WS-I
Monitor Tool, and the request and response messages intercepted by WS-I Monitor. The
structure of log file is defined by XML Schema. log.xsd file describes the XML schema for the
WS-I Monitor tool log file and this schema file can be located in <wsi-test-tools-
home>\common\schemas folder.

Following table describes the list of elements and their significance in log file.

Element Description

log This element is the root element for the WS-I Monitor
log file. This root element encloses all configuration
parameters, environment information for the WS-I
Monitor Tool and the intercepted messages.

log[@timestamp] “timestamp” is an attribute of “log” element. It specifies
the time at which the log file was created. This value is
less than or equal to the timestamp of the first
messageEntry in the log.

monitor “Monitor” element contains versioning information of
the Monitor tool used. This element also contains the
Monitor Tool configuration specified in the
monitorConfig.xml file and the environment
information.

monitor[@version] “version” is an attribute of “monitor” element and
displays the version of the WS-I Monitor tool.

monitor[@releaseDate] “releaseDate” is an attribute of “monitor” element and
displays the release date of the WS-I Monitor tool.

implementer “implementer” is a child element of “monitor”
element and identifies the organization that created
the monitor tool.

implementer[@name] “name” is as attribute of “implementer” element and
displays the name of the organization that created the
monitor tool.

implementer[@location] “location” is as attribute of “implementer” element
and displays the URL of the Web site from where the
monitor tool can be obtained.

environment “environment” is a child element of “monitor”
element and describes the operating system and
runtime environment used to run the WS-I Monitor
application.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 16 of 16

Element Description

runtime “runtime” is a child element of “environment”
element and describes the runtime environment used
by WS-Monitor tool.

runtime[@name] “name” is as attribute of “runtime” element and displays
the name of the name of the runtime environment. Ex:
Java, .NET, etc.

runtime[@version] “version” is as attribute of “runtime” element and
displays the version of the runtime in use.

operatingSystem “operatingSystem” is a child element of
“environment” element and describes the operating
system used to run the WS-I Monitor application.

operatingSystem[@Name] “name” is as attribute of “operatingSystem” element and
displays the name of the operating system.

operatingSystem[@version] “version” is as attribute of “operatingSystem”
element and displays the version of the operating
System is use.

xmlParser “xmlParser” is a child element of “environment”
element and describes the XMP parser used by the
WS-I Monitor application. This element is optional
and will only be included if the XML Parser makes a
difference.

xmlParser[@name] “name” is as attribute of “xmlParser” element and
displays the name of the XML parser used by WS-I
Monitor tool.

xmlParser[@version] “version” is as attribute of “xmlParser” element and
displays the version of the XML parser used by WS-I
Monitor tool.

configuration “configuration” is a child element of “monitor”
element and describes the configuration parameter
that are specified in the monitor configuration file
used to run the WS-I Monitor application.

messageEntry “messageEntry” is a child element of “log” element
and describes the messages intercepted by WS-I
Monitor tool.  Each “messageEntry” describes one
intercepted request/response message.

messageEntry[@timestamp] “timestamp” is an attribute of “messageEntry” element
and displays the time when the message was intercepted
by WS-I Monitor tool.

messageEntry[@
conversationID]

“conversationID” is an attribute of “messageEntry”
element and this identifier is used to group messages
received between the time that the client connects to the
monitor port and when that connection is closed. The
string is unique for each connection.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 17 of 17

Element Description
messageEntry[@ID] “ID” is an attribute of “messageEntry” element and

displays unique identifier for each intercepted
message within the log.

messageEntry[@type] “type” is an attribute of “messageEntry” element and
displays the type information for the intercepted
messages. The valid values for this attribute are as
follows:

• “request”
Identifies the entry as a HTTP request.

• “response”
Identifies the entry as a HTTP response.

messageContent “messageContent” is a child element of
“messageEntry” element and contains the HTTP
Body message in the HTTP request or HTTP
response messages intercepted by WS-I Monitor tool.
Special characters like ‘<’ and ‘>’ will be converted
to their entity reference equivalents.

messageContent[@BOM] “BOM” is an attribute of “messageContent” element
and displays Byte Order Mark (if any) that was
originally in the HTTP payload.

senderHostAndPort “senderHostAndPort” is a child element of
“messageEntry” element and identifies the host name
and TCP port of the machine from where the message
was sent. In a “request” type of messages, this will
match the value of the port and host where the Web
Services client is running. In a “response” type of
messages, this will match the value of the port and
host where the Web Services are deployed.
When a port value is not specified, the default value
of port 80 is assumed.

receiverHostAndPort “receiverHostAndPort” is a child element of
“messageEntry” element and identifies the host name
and TCP port of the machine where the message will
be received. In a “request” type of messages, this will
match the value of the port and host where the Web
Services are deployed. In a “response” type of
messages, this will match the value of the port and
host where the Web Services client is running.
When a port value is not specified, the default value
of port 80 is assumed.

httpHeaders “httpHeaders” is a child element of “messageEntry”
element and contain the HTTP headers of the
corresponding request/response message.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 18 of 18

3.4.8 Sample Message Log File

Fig #3 illustrates the sample log file generated by WS-I Monitor tool.

<?xml version="1.0" encoding="utf-8" ?>
<?xml-stylesheet href="..\..\common\xsl\log.xsl" type="text/xsl" alternate="no" ?>
<!-
Copyright (C) 2002-2003 by The Web Services-Interoperability Organization (WS-I) and
Certain of its Members. All Rights Reserved.
. . . -->
<wsi-log:log
xmlns:wsi-log="http://www.ws-i.org/testing/2003/03/log/"
xmlns:wsi-monConfig="http://www.ws-i.org/testing/2003/03/monitorConfig/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" timestamp="2003-06-
13T13:10:03-07:00 ">
<wsi-log:monitor version="0.95.0.0" releaseDate="2003-06-04">
<wsi-log:implementer name="WS-I Organization"
location="http://www.ws-i.org/Testing/Tools/2003/06/WSI_Test_CS_0.95_bin.zip " />
<wsi-log:environment>
<wsi-log:runtime name=".NET" version="1.1.4322.573" />
<wsi-log:operatingSystem name="Win32NT" version="5.1.2600.0" />
<wsi-log:xmlParser name=".NET" version="1.1.4322.573" />
</wsi-log:environment>

<wsi-monConfig:configuration>
<wsi-monConfig:comment>This is a sample monitor config file
</wsi-monConfig:comment>
<wsi-monConfig:logFile location="traceLog.xml" replace="true">
<addStyleSheet alternate="false" href="..\..\common\xsl\log.xsl" type="text/xsl"
xmlns="http://www.ws-i.org/testing/2003/03/common/" />
</wsi-monConfig:logFile>
<wsi-monConfig:logDuration>900</wsi-monConfig:logDuration>
<wsi-monConfig:cleanupTimeoutSeconds>120</wsi-monConfig:cleanupTimeoutSeconds>
<wsi-monConfig:manInTheMiddle>
<wsi-monConfig:redirect>
<wsi-monConfig:comment>This redirects to local machine
</wsi-monConfig:comment>
<wsi-monConfig:listenPort>9090</wsi-monConfig:listenPort>
<wsi-monConfig:schemeAndHostPort>localhost:80
</wsi-monConfig:schemeAndHostPort>
<wsi-monConfig:maxConnections>1000</wsi-monConfig:maxConnections>
<wsi-monConfig:readTimeoutSeconds>30</wsi-monConfig:readTimeoutSeconds>
</wsi-monConfig:redirect>
</wsi-monConfig:manInTheMiddle>
</wsi-monConfig:configuration>
</wsi-log:monitor>

http://www.ws-i.org/testing/2003/03/log/
http://www.ws-i.org/testing/2003/03/monitorConfig/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.ws-i.org/Testing/Tools/2003/06/WSI_Test_CS_0.95_bin.zip
http://www.ws-i.org/testing/2003/03/common/


© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 19 of 19

<wsi-log:messageEntry xsi:type="wsi-log:httpMessageEntry"
timestamp="2003-06-13T13:10:17.5540859-07:00"
conversationID="1" ID="1" type="request">
<wsi-log:messageContent BOM=”4294851584”>
&lt;?xml version="1.0" encoding="utf-16"?&gt;
&lt;soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"&gt;
&lt;soap:Body&gt;
&lt;getCatalog xmlns="http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2002-08/Retailer.wsdl" /&gt;
&lt;/soap:Body&gt;
&lt;/soap:Envelope&gt;
</wsi-log:messageContent>
<wsi-log:senderHostAndPort>127.0.0.1:2302</wsi-log:senderHostAndPort>
<wsi-log:receiverHostAndPort>localhost:80</wsi-log:receiverHostAndPort>
<wsi-log:httpHeaders>POST /wsi/main/SampleApps/SupplyChain/Retailer/Retailer.asmx HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; MS Web Services Client Protocol 1.1.4322.573)
Content-Type: text/xml; charset=utf-16
SOAPAction: ""
Content-Length: 351
Expect: 100-continue
Host: 127.0.0.1:80
</wsi-log:httpHeaders>
</wsi-log:messageEntry>

<wsi-log:messageEntry xsi:type="wsi-log:httpMessageEntry" timestamp="2003-06-
13T13:10:18.0225269-07:00" conversationID="1" ID="2" type="response">
<wsi-log:messageContent BOM=”15711167”>
&lt;?xml version="1.0" encoding="utf-8"?&gt;
&lt;soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"&gt;
&lt;soap:Body&gt;
&lt;getCatalogResponse xmlns="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-
08/Retailer.wsdl"&gt;
&lt;return xmlns=""&gt;
&lt;Item xmlns="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-
08/RetailCatalog.xsd"&gt;
 . . .
&lt;/Item&gt;
&lt;/return&gt;
&lt;/getCatalogResponse&gt;
&lt;/soap:Body&gt;
&lt;/soap:Envelope&gt;
</wsi-log:messageContent>
<wsi-log:senderHostAndPort>localhost:80</wsi-log:senderHostAndPort>
<wsi-log:receiverHostAndPort>127.0.0.1:2302</wsi-log:receiverHostAndPort>
<wsi-log:httpHeaders>HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1 Date: Fri, 13 Jun 2003 20:10:17 GMT



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 20 of 20

X-Powered-By: ASP.NET X-AspNet-Version: 1.1.4322
Cache-Control: private, max-age=0
Content-Type: text/xml; charset=utf-8
Content-Length: 3447
</wsi-log:httpHeaders>
</wsi-log:messageEntry>

 . . .

<wsi-log:messageEntry xsi:type="wsi-log:httpMessageEntry" timestamp="2003-06-
13T13:10:19.0225269-07:00" conversationID="2" ID="4" type="request">
<wsi-log:messageContent BOM=”15711167”>
&lt;?xml version="1.0" encoding="utf-8"?&gt;
&lt;soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"&gt;
&lt;soap:Body&gt;
&lt;logEventRequestElement xmlns="http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2002-08/LoggingFacility.xsd"&gt;
&lt;DemoUserID&gt;
ee04714a-5b7f-4e2e-9d4b-0c3ceb27c715
&lt;/DemoUserID&gt;
&lt;ServiceID&gt;
ManufacturerA.submitPO
&lt;/ServiceID&gt;
&lt;EventID&gt;UC3-3&lt;/EventID&gt;
&lt;EventDescription&gt;
ManufacturerA is replenishing stock for 605008
&lt;/EventDescription&gt;
&lt;/logEventRequestElement&gt;
&lt;/soap:Body&gt;
&lt;/soap:Envelope&gt;
</wsi-log:messageContent>
<wsi-log:senderHostAndPort>127.0.0.1:2305</wsi-log:senderHostAndPort>
<wsi-log:receiverHostAndPort>localhost:80</wsi-log:receiverHostAndPort>
<wsi-log:httpHeaders>POST /wsi/main/SampleApps/SupplyChain/LoggingFacility/LoggingFacility.asmx
HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; MS Web Services Client Protocol 1.1.4322.573)
Content-Type: text/xml; charset=utf-8
SOAPAction: ""
Content-Length: 636
Expect: 100-continue
Host: 127.0.0.1:80
</wsi-log:httpHeaders>
</wsi-log:messageEntry>

<wsi-log:messageEntry xsi:type="wsi-log:httpMessageEntry" timestamp="2003-06-
13T13:10:19.1225269-07:00" conversationID="2" ID="5" type="response">
<wsi-log:messageContent />



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 21 of 21

<wsi-log:senderHostAndPort>localhost:80</wsi-log:senderHostAndPort>
<wsi-log:receiverHostAndPort>127.0.0.1:2305
</wsi-log:receiverHostAndPort>
<wsi-log:httpHeaders>HTTP/1.1 202 Accepted
Server: Microsoft-IIS/5.1
Date: Fri, 13 Jun 2003 20:10:19 GMT
X-Powered-By: ASP.NET X-AspNet-Version: 1.1.4322
Cache-Control: private
Content-Length: 0
</wsi-log:httpHeaders>
</wsi-log:messageEntry>
</wsi-log:log>

Figure 3 – Example of Message Log file.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 22 of 22

3.4.9 Viewing the HTML version of the Message Log File

The XSL style sheet referred to by the XML processing instruction embedded at the beginning of
the log file, control the rendering of the log file in HTML format. This XML processing
instruction in XML log file appears as follows:

<?xml-stylesheet href="..\..\common\xsl\log.xsl" type="text/xsl" alternate="no" ?>

The XSL style sheet referred to by “href” attribute should be accessible from the directory where
the log file is located. The common.xsl file referred to by log.xsl file should also be appropriately
accessible in order to render the log file in HTML format.

When using IE to view the HTML version of the log file, it is preferred to use IE 5.5, or later
version of IE.  In order to view the log file in HTML format using IE, just open the log file using
IE.

The user may notice the differences in namespace qualifications of the elements specified  in
traceLog.xml  and in log.xsl. For example, an entry element in tracelog.xml is “log” whereas the
entry in the log.xsl is “wsi-log:log”. There is a difference between the way that elements are
namespace qualified in the traceLog.xml file and the way they are referenced in the log.xsl file.
 In the traceLog.xml file, the default namespace is "http://www.ws-i.org/testing/2003/03/log/", so
there is no need to qualify the element names.  In the log.xsl file, element references must be
namespace qualified so that the XSL processor knows exactly which element to process.  In the
log.xsl file, "wsi-log" is the short name for the "http://www.ws-i.org/testing/2003/03/log/"
namespace.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 23 of 23

4 WS-I Analyzer Tool

4.1 Brief Description

WS-I Analyzer tool verifies the conformance of Web Services artifacts to WS-I Profiles. WS-I
Analyzer tool analyzes the following three test targets:

• Web Services Description (i.e. WSDL document)
• Web Services Messages (i.e. SOAP Request and SOAP Responses including their HTTP

Headers)
• Web Services Discovery (i.e. UDDI entries)

Thus, using the WS-I Analyzer tool the user can analyze the Web Service description (WSDL
document), Envelopes and Messages (Request and/or Response messages) and Web Services
Discovery (UDDI entries) for WS-I Profile conformance.

4.2 WS-I Analyzer Processing Rules

The Analyzer is controlled through the use of a Test Assertion Document (TAD).  The TAD for
the WS-I Basic Profile defines four primary artifacts: envelopes, messages, description, and
discovery.  These artifacts correlate to the <logFile>, <wsdlReference> and <uddiReference>
elements in the configuration file.  The following rules describe the expected combinations, and
the behavior of the WS-I Analyzer Tool for these combinations:

• If only the <logFile> element is specified, then all envelopes and messages in a log
file are processed by the analyzer.  Any test assertions that had a Web Service
description defined for a secondary entry type will be bypassed.

• The <wsdlReference> and <uddiReference> elements can not be specified together.

• If only the <uddiReference> element is specified, then the test assertions for both
artifacts -the description artifacts and the discovery artifacts - are processed.

• If only the <wsdlReference> element is specified, then only the test assertions for the
description artifact are processed.

• If the <logFile> and <wsdlReference> elements are specified, then the test assertions
for both - the messages and the description - artifacts are processed.  If the
<wsdlElement> element contains a reference to a WSDL port or the
<serviceLocation> element is specified, and there are messages for more than one
Web Service in the log file, then only the messages that are associated with specified
Web Service will be analyzed.

• If the <logFile> and <uddiReference> elements are specified, then the test assertions
for the messages, description and discovery artifacts are processed.  If the <uddiKey>
element contains a reference to a bindingTemplate and there are messages for more



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 24 of 24

than one Web service in the log file, then only the messages that are associated with
specified Web service will be analyzed.

• If the <logFile> element is specified with either a <wsdlReference> or a
<uddiReference> and they do not contain a service location (i.e. wsdl:port element
reference, uddi:bindingTemplate reference, or <serviceLocation> element), then the
analyzer will terminate after processing the configuration options.

• If a <uddiReference> element contains a <wsdlElement> element, then the type
attribute value is “binding”.  If it is not, then the analyzer will terminate after
processing the configuration options.

• If a <serviceLocation> element is specified within a <wsdlReference> element, the
<wsdlElement> element contains a reference to either a <wsdl:port> or
<wsdl:binding>.  If it does not, then the analyzer will terminate after processing the
configuration options.  If the <wsdlElement> element contains a reference to a
<wsdl:port>, then the value in the <serviceLocation> element is used instead of the
value of the <soapbind:address> element within the <wsdl:port> element.

• If a <serviceLocation> element is specified within a <uddiReference> element, the
<wsdlElement> element contains a reference to a <wsdl:binding>.  If it does not, then
the analyzer will terminate after processing the configuration options.  If the
<uddiKey> element contains a reference to a <uddi:bindingTemplate>, then the value
in the <serviceLocation> element is used instead of the value of the
<uddi:accessPoint> element within the <uddi:bindingTemplate>.

• A <uddiReference> element may contain a reference to a <uddi:bindingTemplate>
which references more than one <uddi:tModel> that are categorized as “wsdlSpec”,
or a <uddi:tModel> that references more than one <wsdl:binding>.  When these
conditions exist, the <wsdlElement> element with a type attribute value of “binding”
will normally be used to indicate which <wsdl:binding> element to analyze.

• When a <uddiReference> element contains a valid <wsdlElement> element and the
referenced <uddi:bindingTemplate> or <uddi:tModel> contains a reference to more
than one <wsdl:binding>, if the specified <wsdl:binding> can not be found then the
analyzer  will terminate after detecting this condition.

There are certain situations where the input artifacts for the analyzer are not as complete as
expected, such as an empty log file or incomplete WSDL description.  The following table
describes some of these cases, and explains the expected behavior of the analyzer in such cases.

Sr. No. State of the Input Artifact  Analyzer behavior
1 Log file with no elements (no

<messageEntry> element).  This
could happen when the monitor is
started and stopped without
receiving any messages.

The test assertions that target a request or
response message as the primary entry, will
have a result of “missingInput”.

2 A WSDL document is provided as The analyzer will terminate with an error



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 25 of 25

input but it does not contain the
WSDL element which is specified
on the <wsdlElement> element.

message which indicates that the WSDL
document did not contain the expected WSDL
element.

3 The analyzer configuration file
contains a reference to a UDDI
entry, but the UDDI entry does not
exist.

The analyzer will terminate with an error
message which indicates that the UDDI entry
is not valid.

4 The analyzer configuration file
contains a reference to a port,
binding or portType, but the
associated portType does not
contain any operation definitions.

If a log file is not specified in the analyzer
configuration file, then no special processing
occurs.  The test assertions with WSDL
operation and WSDL message for primary
entry types will not be processed.

If a log file is specified and the correlation type
is endpoint, then the correlation process can be
done but any message-related test assertions
with an additional entry type of operation or
message will have a result of “notApplicable”.

If a log file is specified and the correlation type
is namespace or operation, then there is no way
to process the correlation function.  When this
condition is detected, then the analyzer will
terminate with an error message that indicates
that the WSDL service description did not
contain enough information to process the
correlation function.

5 The analyzer configuration file
contains a reference to a WSDL  or
UDDI element that would indicate
that other WSDL or UDDI
elements should not be processed.
For example, if the
<wsdlElement> contains a
reference to a portType element,
then the binding element will not
be processed.

The test assertions which contain an entry type
that matches the elements that aren’t processed
will have a result of  “missingInput”.

6 A WSDL document is provided as
input, but it does not contain
elements that match all of the entry
types in the WSDL-related test
assertions.  For example, a WSDL
document may not contain a
<types> element, but there are test
assertions that have a primary
entry type of “types”.

The test assertions which contain an entry type
which matches the missing elements will have
a result of “missingInput”.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 26 of 26

4.3 Configuration Setup
The user can specify the analyzer configuration using the analyzerConfig.xml file. The
analyzerConfig.xml file contains the list of configuration options for WS-I Analyzer Tool.
analyzerConfig.xsd file describes the XML schema for the WS-I Analyzer tool configuration file
and this schema file can be located in <wsi-test-tools-home>\common\schemas folder.
Following table describes the list of available options and their usage in analyzerConfig.xml file.

Element Description Usage
configuration This is the root element for the configuration file. This root

element encloses all configuration parameters for the WS-I
Analyzer Tool.

Mandatory

Configuration[@
name]

“name” is an attribute of “configuration” element. The user
can specify the name associated with the specified
configuration using this element.

Optional

description The user can specify the brief description for the specified
configuration using this element.

Optional

verbose The user can specify the desired value for “verbose”
element to indicate whether diagnostic information should
be displayed while the analyzer is running.  The valid
values for “verbose” element are “true” or “false”.
When running the analyzer tool from the command line,
the diagnostic information is displayed on the console.

Optional
Default value
– “false”

assertionResults The user can specify the appropriate values for the
attributes of this element to indicate the type of assertion
results that should be listed in the conformance report.

Mandatory

assertionResults[@
type]

“type” is an attribute of “assertionResults” element. Using
this attribute the user can specify the type of assertion
results to be included in the conformance report.  The
allowed values for the “type” attribute and their
significance are listed as below:
• all

List the results from all test assertions.

• notPassed
List all assertion test results except the ones that have a
result of “passed”.

• onlyFailed
List only the test assertion results that have a result of
“failed”.

• notInfo
List  only the test assertion results that do not have a type of
“informational”.

Optional

Default value
– “all’’



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 27 of 27

assertionResults[
@messageEntry]

“messageEntry” is an attribute of “assertionResults” element.
Using this attribute the user can specify whether the message
entries should be included in the report file. The allowed
values for “messageEntry” attribute are as follows:

• true
Includes the message entries in the report file.

• false
Does not include the message entries in the report file.

Optional
Default value
– “true”

assertionResults[
@assertionDescr
iption]

“assertionDescription” is an attribute of “assertionResults”
element.  Using this attribute the user can specify whether the
description of each test assertion should be included in the
report file. The allowed values for “assertionDescription”
attribute are as follows:

• true
Includes the description of each test assertion in the report
file.

• false
Does not include the description of each test assertion in
the report file.

Optional
Default value
– “false”

assertionResults[
@failureMessag
e]

“failureMessage” is an attribute of “assertionResults”
element.  Using this attribute the user can specify whether the
failure message defined for each test assertion should be
included in the report file. The allowed values for
“failureMessage” attribute are as follows:

• true
Includes the defined failure messages for each test
assertion in the report file.

• false
Does not include the defined failure messages for each test
assertion in the report file.

Optional
Default value
– “true”

assertionResults[
@failureDetail]

“failureDetail” is an attribute of “assertionResults” element.
Using this attribute the user can specify whether the failure
detail message defined for each test assertion should be
included in the report file. The allowed values for
“failureDetail” attribute are as follows:

• true
Includes the defined failure detail messages for each test
assertion in the report file.

• false
Does not include the defined failure detail messages for
each test assertion in the report file.

Optional

Default value
– “true”



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 28 of 28

reportFile The user can specify the appropriate values for the
attributes of this element to provide the location of the
report file and to indicate whether the existing report file
with the same name should be overwritten.

Mandatory

reportFile[@repl
ace]

“replace” is an attribute of “reportFile” element.  Using this
attribute the user can specify whether the existing report file
specified by the value of “location” attribute can be
overwritten. The allowed values for “replace” attribute are as
follows:

• true
Indicates that the already existing report file can be
replaced.

• false
Indicates that if the report filename with the same name
specified by the value of “location” attribute already exists
then it cannot be replaced.  If the values is set to “false”
then the analyzer will terminate with an error message, if
the report file with specified name already exists.

Optional

Default value
– “false”

reportFile[@locat
ion]

“location” is an attribute of “reportFile” element.  Using this
attribute the user can specify the location and the filename of
the report file. The user can specify the filename as absolute
path or the path relative to the current folder.

Optional

Default value
– “report.xml”

addStyleSheet The user can specify the appropriate values for the
attributes of this element to indicate whether the style sheet
reference should be included in the conformance report
created by the WS-I Analyzer tool.
This is an optional element and if this element is not
specified in the configuration file, then the following
comment line will be inserted in the report file after the
XML declaration statement:

<!-- ?xml-stylesheet type="text/xsl"
href="..\common\xsl\report.xsl"?  -->

Optional

addStyleSheet[@
href]

“href” is an attribute of “addStyleSheet” element.  Using this
attribute the user can specify the location and the filename of
the style sheet. The user can specify the filename as absolute
path or the path relative to the current folder. The specified
style sheet will be used to render the report in HTML format.

Mandatory

addStyleSheet[@t
ype]

“type” is an attribute of “addStyleSheet” element.  Using this
attribute the user can specify the content type for the style
sheet.

Optional

Default value
– “text/xsl”



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 29 of 29

addStyleSheet[@t
itle]

“title” is an attribute of “addStyleSheet” element.  Using this
attribute the user can specify the brief description or advisory
information about the style sheet.

Optional

addStyleSheet[@m
edia]

“media” is an attribute of “addStyleSheet” element.  Using
this attribute the user can specify the intended destination
medium for the style sheet.

Optional

addStyleSheet[@ch
arset]

“charset” is an attribute of “addStyleSheet” element.  Using
this attribute, the user can specify the character encoding for
the style sheet.

Optional

addStyleSheet[@al
ternate]

“alternate” is an attribute of “addStyleSheet” element.  The
user can specify the appropriate value for this attribute to
indicate the use of alternate style sheet. The allowed values for
“alternate” attribute are as follows:

• true
Indicates that the use of alternate style sheet.

• false
Indicates that the alternate style sheet is not used.

Optional

testAssertionFile Using this element, the user can specify the location and the
filename of the WS-I Test Assertion Document (TAD). The
user can specify the filename as absolute path or the path
relative to the current folder. The Analyzer tool will test for
the WS-I conformance against the assertions defined in the
TAD specified by this element.

Mandatory

logFile Using this element the user can specify the location of the
log file that contains the SOAP messages that need to be
processed by the WS-I Analyzer tool.

This is an optional element and if “logFile” element does
not appear in the configuration file, then all test assertions
that operate on the log entries will not be processed.

Optional



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 30 of 30

logFile[@correla
tionType]

“correlationType” is an attribute of “logFile” element.  The
user can specify the appropriate value for this attribute to
define what information should be used to match the messages
from the log file with the web services that are being tested.
The allowed values for “correlationType” attribute are as
follows:

• endpoint
Indicates a message is correlated to a Web service
based only on the endpoint definition. This option is
sufficient when a single Web Service is deployed on
this endpoint.

• namespace
Indicates that the correlation process will use both - the
endpoint and the  namespace - to match a message to a
Web service. This option is necessary when more than
one Web Services are deployed on this endpoint. (The
namespace allows for selecting the right one.)

• ooperation
Indicates that the correlation requires a match on the
endpoint, namespace and a operation signature. This
option is necessary when more than one Web Services
are deployed on this endpoint, and they might use the
same namespace (The operation allows for additional
discrimination, although this will not be sufficient if
both WS use same operation names.)

Optional
Default value
– “operation”

wsdlReference This is a wrapper element for “wsdlElement”, “wsdlURI”
and “serviceLocation”.  Using this element the user can
refer to the WSDL element and the WSDL file, which
should be analyzed. At any time only of the two elements –
either wsdlReference or UDDIReference - can appear in a
configuration file. wsdlReference is an optional element
and if this element does not appear in the configuration
file, then the WSDL related test assertions will not be
processed.

Optional

wsdlElement “wsdlElement” can appear as a child element of
“wsdlReference” or “uddiReference” element. Using this
element, the user can specify the reference to the WSDL
element that should be analyzed.  The user can also specify
the appropriate values for the attributes of this element to
indicate the type, namespace and parent element of the
referenced element.

Mandatory



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 31 of 31

wsdlElement[@ty
pe]

“type” is an attribute of “wsdlElement” element.  The user can
specify the appropriate value for this attribute to indicate the
type of the element that is referenced by “wsdlElement”. The
allowed values for “type” attribute are as follows:

• port
Indicates the element that is referenced by
“wsdlElement” is of type “port”.

•  binding
Indicates the element that is referenced by
“wsdlElement” is of type “binding”.

• portType
Indicates the element that is referenced by
“wsdlElement” is of type “portType”.

• operation
Indicates the element that is referenced by
“wsdlElement” is of type “port”.

• message
Indicates the element that is referenced by
“wsdlElement” is of type “message”.

Mandatory

wsdlElement[@n
amespace]

“namespace” is an attribute of “wsdlElement” element.
Using this attribute, the user can specify the appropriate
namespace for the element that is referenced by
“wsdlElement”.

Mandatory

wsdlElement[@p
arentElementNa
me]

“parentElementName” is an attribute of “wsdlElement”
element. The attribute is only required when the “type”
attribute has a value of “port” or “operation”.  Specifying
the appropriate value for “parentElementName” attribute,
the user can qualify the reference to a WSDL port
definition within a service element if the referenced
element is of type “port”. It can also be used to qualify the
reference to an operation definition within a portType if
the referenced element is of type “operation”.

Optional

wsdlURI “wsdlURI” is a child element of “wsdlReference”. Using this
element, the user can specify the location and the filename of
the WSDL file for the Web Services under test. The user can
specify the filename as absolute path or the path relative to the
current folder. The user can also specify the location of the
WSDL file as HTTP URI.

Mandatory



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 32 of 32

serviceLocation “serviceLocation” can appear as a  child element of
“wsdlReference” or “uddiReference” element. Using this
element, the user can specify the service location information
for the element that is referenced by the corresponding
“wsdlElement”.
There are times when the service location is not defined in
a WSDL document, but this information is required by the
WS-I Analyzer tool.  When this situation occurs, the
<wsdlElement> element should reference a WSDL binding
and “serviceLocation” element should contain the service
endpoint location.

If the <wsdlElement> element contains a reference to a
wsdl:port and the <serviceLocation> element is specified,
then the value in the <serviceLocation> element overrides
the value of the “location” attribute of the
<soapbind:address> element.

Optional



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 33 of 33

uddiReference This is a wrapper element for “uddiKey”, “inquiryURL”,
“wsdlElement” and “serviceLocation” elements.  Using
this element the user can specify a single UDDI
bindingTemplate or  tModel, bindingKey or tModelKey,
inquiryURL and “wsdlElement” elements. At any time
only of the two elements – either wsdlReference or
uddiReference - can appear in a configuration file.
uddiReference is an optional element and if this element
does not appear in the configuration file, then the UDDI
related test assertions will not be processed.
If neither “uddiReference” nor “wsdlReference” element
appears in the configuration file, then both - WSDL and
UDDI – related test assertions will not be processed by the
WS-I Analyzer tool.

Optional

uddiKey “uddiKey” is a child element of “uddiReference” element.
Using this element, the user can specify the value and type
of the UDDI key. The user can also specify the appropriate
values for the attributes of this element to indicate the type
of the UDDI key reference by this element.

Mandatory

uddiKey[@type]  “type” is an attribute of “uddiKey” element. The user can
specify the appropriate value for this attribute to indicate the
type of the UDDI key referred  by “uddiKey” element. The
allowed values for “type” attribute are as follows:

• bindingKey
Indicates the UDDI key that is referenced by
“uddiKey” is of type “bindingKey”.

• tModelKey
Indicates the UDDI key that is referenced by
“uddiKey” is of type “tModelKey”.

Mandatory

inquiryURL “inquiryURL” is a child element of “uddiReference”
element. Using this element, the user can specify the
inquiry URL that can be used to retrieve the UDDI
bindingTemplate or tModel associated with the uddiKey
element.

Mandatory

4.4 Sample Configuration Files
This section illustrates the sample configuration files for usage of WS-I Analyzer Tool for three
different scenarios. The sample configuration files for following three different scenarios are
explained in this section.

• Sample configuration file that uses direct WSDL reference.
• Sample configuration file that uses <serviceLocation> element.
• Sample configuration file that uses UDDI reference.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 34 of 34

4.4.1 Sample configuration file that uses direct WSDL reference
The sample WS-I Analyzer tool configuration file that directly references the WSDL document
as a local disk file appears as below:

<?xml version="1.0" encoding="UTF-8"?>
<wsi-analyzerConfig:configuration name="Sample Basic Profile Analyzer Configuration"

xmlns:wsi-analyzerConfig=”http://www.ws-i.org/testing/2004/07/analyzerConfig”/>

<wsi- analyzerConfig:description xml:lang="en">
    This file contains a sample of the configuration file for
    the Basic Profile Analyzer, which can be used with the
    other sample files.

</wsi- analyzerConfig:description>

<wsi-analyzerConfig:verbose>false</wsi-analyzerConfig:verbose>
<wsi-analyzerConfig:assertionResults type="all" messageEntry="false"

failureMessage="true"/>
<wsi-analyzerConfig:reportFile replace="true" location="report.xml">

<wsi- analyzerConfig:addStyleSheet href="../common/xsl/report.xsl"/>
</wsi-analyzerConfig:reportFile>
<wsi-analyzerConfig:testAssertionsFile>

../common/profiles/BasicProfileTestAssertions.xml
</wsi-analyzerConfig:testAssertionsFile>
<wsi-analyzerConfig:logFile correlationType="endpoint">

traceLog.xml
</wsi-analyzerConfig:logFile>
<wsi-analyzerConfig:wsdlReference>

<wsi-analyzerConfig:wsdlElement type="port"
    parentElementName="RetailerService"
    namespace="http://.../RetailerService.wsdl">

  LocalIBMRetailerPort
</wsi-analyzerConfig:wsdlElement>

<wsi-analyzerConfig:wsdlURI>
  ../common/samples/RetailerService.wsdl

</wsi-analyzerConfig:wsdlURI>
</wsi-analyzerConfig:wsdlReference>

</wsi-analyzerConfig:configuration>

Figure 4 – Example of Configuration file Using Direct WSDL Reference.

The sample configuration file listed in Fig. #4 instructs the WS-I Analyzer tool to perform the
following tasks:

1. Run without displaying diagnostic information (wsi-analyzerConfig:verbose value is
false).

2. List all assertion results in the conformance report, as opposed to listing only a subset of
those(assertionResults type="all").

3. Exclude log entries from the conformance report (messageEntry="false). The
conformance of each log entry will still be reported, but the full content of the log entry
will not appear.

4. Include failure messages for each test assertion in the report (failureMessage="true").



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 35 of 35

5. Write the report file to “report.xml” (location="report.xml”), and if the report file with
same name already exists then replace it (replace="true").

6. Write the log file to “tracelog.xml” (wsi-analyzerConfig:logFile value is traceLog.xml).
7. Correlate messages to Web services based on the endpoint

(correlationType="endpoint”).
8. The conformance target is a single port:  (wsdlElement type="port" ,

parentElementName="RetailerService")
9. Refer to the WSDL “samples/retailer.wsdl” file for Web Services description

(wsdlElement namespace="http://.../Retailer.wsdl”).

4.4.2 Sample configuration file that uses serviceLocation element
The configuration listed in Fig. #5 describes the sample WS-I Analyzer tool configuration file
that user the serviceLocation element to specify the web service endpoint location, if this
information is not specified in the WSDL document.

<?xml version="1.0" encoding="UTF-8"?>
<wsi-analyzerConfig:configuration name="Sample Basic Profile Analyzer Configuration"

xmlns:wsi-analyzerConfig=”http://www.ws-i.org/testing/2004/07/analyzerConfig”/>

<wsi-analyzerConfig:description xml:lang="en">
    This file contains a sample of the configuration file for
    the Basic Profile Analyzer, which can be used with the
    other sample files.

</wsi-analyzerConfig:description>

<wsi-analyzerConfig:verbose>false</wsi-analyzerConfig:verbose>
<wsi-analyzerConfig:assertionResults type="all" messageEntry="false"

failureMessage="true"/>
<wsi-analyzerConfig:reportFile replace="true" location="report.xml">

<wsi-analyzerConfig:addStyleSheet href="../common/xsl/report.xsl"/>
</wsi-analyzerConfig:reportFile>
<wsi-analyzerConfig:testAssertionsFile>

     ../common/profiles/BasicProfileTestAssertions.xml
</wsi-analyzerConfig:testAssertionsFile>
<wsi-analyzerConfig:logFile correlationType="endpoint">

     traceLog.xml
</wsi-analyzerConfig:logFile>
<wsi-analyzerConfig:wsdlReference>

<wsi-analyzerConfig:wsdlElement type="binding"
namespace="http://www.ws-

i.org/SampleApplications/SupplyChainManagement/2002-08/Retailer.wsdl">
   RetailerSoapBinding

</wsi-analyzerConfig:wsdlElement>
<wsi-analyzerConfig:wsdlURI>

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Retailer.wsdl
</wsi-analyzerConfig:wsdlURI>
<wsi-analyzerConfig:serviceLocation>

        http://tempuri.org/services/retailerService
</wsi-analyzerConfig:serviceLocation>

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Retailer.wsdl
http://tempuri.org/services/retailerService


© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 36 of 36

</wsi-analyzerConfig:wsdlReference>
</wsi-analyzerConfig:configuration>

Figure 5 – Example of Configuration file Using Service Location

The sample configuration file listed in Fig. #5 instructs the WS-I analyzer tool to perform the
following tasks:

1. The conformance target is a binding element. (<wsdlElement type="binding">
RetailerSoapBinding< wsdlElement> )

2. Refer to the WSDL specified using HTTP URL for Web Services description
(<wsdlURI>http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-
08/Retailer.wsdl</wsdlURI >).

3. Refer to http://tempuri.org/services/retailerService as service endpoint location.
(<serviceLocation>http://tempuri.org/services/retailerService</ serviceLocation>). When
the service location is not defined in a WSDL document, but this information is required
by the WS-I Analyzer tool.  When this situation occurs, the <wsdlElement> element
should reference a WSDL binding and “serviceLocation” element should contain the
service endpoint location.

4.4.3 Sample configuration file that uses UDDI reference
The configuration listed in Fig. #6 describes the sample WS-I Analyzer tool configuration file
that uses the UDDI reference.

<?xml version="1.0" encoding="UTF-8"?>
<wsi-analyzerConfig:configuration name="Sample Basic Profile Analyzer Configuration"

xmlns:wsi-analyzerConfig= “http://www.ws-i.org/testing/2004/07/analyzerConfig” />

<wsi-analyzerConfig:description xml:lang="en">
    This file contains a sample of the configuration file for
    the Basic Profile Analyzer, which can be used with the
    other sample files.

</wsi-analyzerConfig:description>

<wsi-analyzerConfig:verbose>false</wsi-analyzerConfig:verbose>
<wsi-analyzerConfig:assertionResults type="all" messageEntry="false" failureMessage="true"/>
<wsi-analyzerConfig:reportFile replace="true" location="report.xml">

<wsi-analyzerConfig:addStyleSheet href="../common/xsl/report.xsl"/>
</wsi-analyzerConfig:reportFile>
<wsi-analyzerConfig:testAssertionsFile>

    ../common/profiles/BasicProfileTestAssertions.xml
</wsi-analyzerConfig:testAssertionsFile>
<wsi-analyzerConfig:logFile correlationType="endpoint">

    traceLog.xml
</wsi-analyzerConfig:logFile>
<wsi-analyzerConfig:uddiReference>

<wsi-analyzerConfig:uddiKey type="bindingKey"> 22eb4f00-0ef2-11d7-a725-000629dc0a53</wsi-
analyzerConfig:uddiKey>

< wsi-analyzerConfig:inquiryURL >
http://uddi.ibm.com/ubr/inquiryapi

</wsi-analyzerConfig:inquiryURL>

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-
http://tempuri.org/services/retailerService
http://tempuri.org/services/retailerService
http://uddi.ibm.com/ubr/inquiryapi


© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 37 of 37

</wsi-analyzerConfig:uddiReference>
</wsi-analyzerConfig:configuration>

Figure 6 – Example of Analyzer Configuration File Using UDDI Reference.

The sample configuration file listed in Fig. #6 instructs the WS-I analyzer tool to perform the
following tasks:

1. The conformance target is UDDI reference and process the UDDI related test assertions.
2. Refer to the UDDI key of type “bindingKey” for Web Services discovery. (<uddiKey

type="bindingKey"> 22eb4f00-0ef2-11d7-a725-000629dc0a53</wsi-analyzerConfig:uddiKey >).
3. Refer to URL - http://uddi.ibm.com/ubr/inquiryapi for Web Services discovery. (<inquiryURL

> http://uddi.ibm.com/ubr/inquiryapi </ inquiryURL >).Running the WS-I Analyzer Tool

4.5 WS-I Analyzer Tool Command Line Syntax
Apart from configuration file, the user can also use the command line options for WS-I Analyzer
tool. All command line options override the options that are specified in the configuration file.
Both – C# and Java – version of WS-I Analyzer tools  supports –config, -verbose and –
testAssertionFile options, while Java version of WS-I Analyzer tool support additional options.

The simplified command line syntax to invoke the WS-I Analyzer tool is as follows:
Analyzer -config <configFile> [-verbose true|false] [-testAssertionFile <testAssertionFile>]

http://uddi.ibm.com/ubr/inquiryapi
http://uddi.ibm.com/ubr/inquiryapi


© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 38 of 38

4.5.1 C# WS-I Analyzer Tool Command Line Options

The command line options for C# version of WS-I Analyzer tool are described in detail in the
following table:

Sr
No Option Description

1 -config The user can specify the configuration file to be used by the
WS-I Analyzer tool

2 -verbose Display diagnostic messages on the console.

3 -testAssertionFile The user can specify the Test Assertions Document (TAD)
file to be used by the WS-I Analyzer tool

4.5.2 Java WS-I Analyzer Tool Command Line Options

The command line options for Java version of WS-I Analyzer tool are described in detail in the
following table:

Sr
No Option Description

1 -config or –c The user can specify the configuration file to be used
by the WS-I Analyzer tool.

2 -verbose or –v Display diagnostic messages on the console.

3 -testAssertionFile or -t The user can specify the Test Assertions Document
(TAD) file to be used by the WS-I Analyzer tool.

4 -assertionResults or -a
The user can specify the appropriate values for this
option to indicate the type of assertion results that
should be listed in the conformance report.

5 -messageEntry or -M Using this option the user can specify whether the
message entries should be included in the report file.

6 -assertionDescription
or -A

Using this option the user can specify whether the
description of each test assertion should be included in
the report file.

7 -failureMessage or -F
Using this option the user can specify whether the
failure message defined for each test assertion should
be included in the report file.

8 -failureDetail or -D
Using this option the user can specify whether the
failure detail message defined for each test assertion
should be included in the report file.

9 -logFile or -l

Using this option the user can specify the location of
the log file that contains the SOAP messages that need
to be processed by the WS-I Analyzer tool.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 39 of 39

Sr
No Option Description

10 -reportFile or -r The user can specify the appropriate values for this
option to provide the location of the report file

11 -replace or -R Using this option the user can specify whether the
existing report file can be overwritten.

12 -correlationType or -C

The user can specify the appropriate value for this
option to define what information should be used to
match the messages from the log file with the web
services that are being tested.

13 -wsdlElement or -W Using this option, the user can specify the reference to
the WSDL element that should be analyzed.

14 -serviceLocation or -S
Using this option, the user can specify the service
location information for the element that is referenced
by the corresponding “wsdlElement”

15 -wsdlURI or -W
Using this option, the user can specify the location and
the filename of the WSDL file for the Web Services
under test.

16 -uddiKeyType or -K
The user can specify the appropriate value for this
option to indicate the type of the UDDI key referred to
by “uddiKey” element.

17 -uddiKey or -k Using this option, the user can specify the value of the
UDDI Key

18 -inquiryURL or -i
Using this option, the user can specify the inquiry URL
that can be used to retrieve the UDDI bindingTemplate
or tModel associated with the uddiKey element.

4.5.3 Executing the C# Version of WS-I Analyzer Tool

To run the C# version of WS-I Analyzer tool, change directory to the
<wsi-test-tool-home>\cs\bin folder and execute the following command:

Analyzer [-config < configFilename >]

Example:
cd c:\wsi-test-tools\cs\bin
Analyzer -config ..\samples\analyzerConfig.xml

Note: If no configuration file is defined, the analyzer will default to analyzerConfig.xml.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 40 of 40

4.5.4 Executing the Java Version of WS-I Analyzer Tool
To run the Java version of WS-I Analyzer tool, change directory to the
<wsi-test-tool-home>\java\bin folder and execute the following command:

Analyzer -config < configFilename >

Example:
cd C:\wsi-test-tools\java\bin
Analyzer -config ..\samples\analyzerConfig.xml

Note: there is no default configuration file for the Java version.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 41 of 41

5 The Test Assertions Document (TAD)

5.1 Test Assertion representation
A test assertion is an encoding of a profile requirement defined in the profile document.  It can
represent part of a requirement, a single requirement, or more than one requirement.  The set of
test assertions derived from a profile requirement is scripted into an XML document called the
Test Assertion Document (TAD). This document is used by the WS-I Analyzer Tool as input and
it determines the set of test procedures that will be activated.

An example of Test Assertion XML element is shown in Figure 7 below:

<testAssertion id="BP1306" entryType="responseEnvelope" type="required"
enabled="true">
      <context>For a candidate response message containing a soap:Fault element</context>
      <assertionDescription>The soap:Fault element does not have children other than
soap:faultcode, soap:faultstring, soap:faultactor or soap:detail.</assertionDescription>
      <failureMessage>One or more soap:Fault children elements are not standard, i.e. is
neither soap:faultcode, soap:faultstring, soap:faultactor nor soap:detail.</failureMessage>
      <failureDetailDescription>SOAP message</failureDetailDescription>
      <additionalEntryTypeList/>
      <prereqList>
         <testAssertionID>BP1701</testAssertionID>
      </prereqList>
      <referenceList>
         <reference profileID="BP11">R1000</reference>
      </referenceList>
      <comments/>
</testAssertion>

Figure 7 – Example of Test Assertion.

5.2 TAD Terminologies and Definitions
The following terms are used when describing a test assertion. Each of these terms is always
related to a particular test assertion:

• Artifact: General term used to designate the material used as input to the analyzer.
See Chapter 6 (6.1) for a further definition of Artifact.

• Entry Type:  Each artifact type can be further specialized into sub-types, called entry
types.  See Chapter 6 (6.1) for a further definition of Entry Type.

• Test Assertion:  A test assertion is a translation of a WS-I profile requirement into a
statement verifiable by the WS-I Analyzer. Each test assertion is defined by a
testAssertion XML element in the Test Assertion Description document. Each test
assertion usually relates to a specific artifact (though it may correlate several artifacts,
a test assertion will always relate to one of these as its primary artifact, e.g. a



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 42 of 42

“WSDL” test assertion, or a “message” test assertion.) This artifact type is identified
by the “type” attribute of the “artifact” XML element of which the test assertion is a
child.

• Informational Assertion: The profiles have identified some material as being out of
scope.  Though these materials may cause problems with interoperability they are not
in the strictest sense forbidden in order to achieve profile conformance.  Instead, these
materials are listed as Extensibility Points by the profiles.  Extensibility points are
addressed by Informational Assertions in the TAD.  An Informational Assertion can
only have two outcomes produced by the Analyzer in the report file: “passed”, or
“notApplicable”.  In the case of “passed”, an extensibility point was encountered by
the analyzer and its use noted.  In the case of “notApplicable” no such extensibility
point was encountered.  Neither case has an overall effect on the report summary
which can be “passed” or “failed”.

• Primary Entry (Type): A Test Assertion will always target instances of a specific
entry type, for example, a request message or a WSDL port binding. It is identified by
the attribute “entryType” of the XML element “testAssertion”. (Note that a TA may
need to correlate other entries, e.g. may need to access WSDL definitions in order to
verify messages captured on the wire). The primary entry type for a test assertion is
the entry type that is the main object of the test assertion, e.g. a message request or
response.  Each test assertion will generate a single conformance statement within an
analyzer report.   The conformance statement will only concern the primary entry
even though the reported errors may provide details on the associated non-primary
entries.  This means there will be as many pass-or-fail results for this test assertion, as
there are qualified entries (instances of the primary entry type) in the input material to
the Analyzer.

• Secondary Entry (Type): A secondary entry is any entry that is required in addition
to the primary entry, in order to process a test assertion, i.e. needs to be correlated
with the primary entry. For example, the primary entry may be a request message as
captured on the wire, and a secondary entry may be the message parts description in
WSDL that relates to this wire message.  The list of secondary entry types (if any) is
specified in the XML element “additionalEntryTypeList”.

• Qualified Instance: Artifact entry that matches the context of a test assertion.

• Context: Intuitively, the context of a test assertion defines which artifact material will
qualify for a test assertion.  A context in a test assertion is a pre-condition that entries
of one or more entry types must satisfy in order for the analyzer to verify the test
assertion over these entries. When more than one entry type is defined in a test
assertion (primary and secondary types), the context normally defines how to
correlate the entries instances of these types, so that the right secondary entries will
be associated with the primary entry. The context should also single out the primary
entry type. It is described by the XML element: “Context” in the TAD.

• Assertion Description: The assertion description for a test assertion is the actual
profile requirement to which a qualified entry is expected to conform.  It is described
by the XML element: “assertionDescription” in the TAD.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 43 of 43

• Pre-requisites:  A test assertion may refer to pre-requisite test assertions. The
intuitive meaning of pre-requisites is that when verifying the test assertion over an
entry, in case this entry (or related secondary entries) did not satisfy the pre-requisite
test assertions for this test assertion, then the outcome of the test assertion verification
would be meaningless. Consequently, a test assertion should never be evaluated for
an entry, if for the entry (or related secondary entries), the relevant pre-requisite test
assertions failed. However, to enhance the usability of existing assertions as
prerequisites, test assertion can be evaluated for an entry, if any of the prerequisite
test assertions for that entry (or any related secondary entries) are notApplicable. For
example, a test assertion with an entry type of “responseMessage” can be a
prerequisite for a test assertion with entry type “anyMessage”. If the actual entry is a
request message then the pre-requisite test assertion is just ignored. Pre-requisite test
assertion Ids are listed in the XML element: “prereqList” in the TAD.

• Referenced Profile Requirements: A test assertion (TA) normally has references to
one or more profile requirements (“reference” elements), labeled as Rxxxx in the
Profile definition.  Each profile requirement that is referenced by a TA falls into one
of two categories or “roles”:

§ Target profile requirement: This type of profile requirement is verified by
the TA. If the conformance report shows that some entry material fails this
assertion, it means that this entry does not conform to some of the target
requirements (the details of the error message will distinguish which one, in
case there are several.)

§ Collateral profile requirement: This type of profile requirement is NOT
verified by the TA, but is considered as collateral to the test assertion.  A
collateral profile requirement indicates conditions that must be taken into
account, when verifying a target requirement.  Some collateral profile
requirements (e.g. such as MAY and SHOULD types of requirements), may
actually never be verified by (i.e. targets of) any TA. Such requirements
simply represent some possible situations and options that must be taken into
account when verifying other requirements. Collateral requirements are also
different from “pre-requisites” as defined here, in that they may concern other
material than the primary entry for the TA (e.g. a secondary entry).  If case a
collateral requirement for TA 1 is the target of another test assertion TA 2,
and if TA 2 fails on related artifacts, then the outcome of TA  1 should not be
relied upon: in case of failure of TA 1, the artifact failing TA 2 should be
investigated as a possible indirect cause of failure for TA 1.

5.3 How the Test Assertions are processed
This section provides additional information on how test assertions are processed.

• Each one of the Analyzer input options (e.g. as defined in the analyzer configuration
file) maps to an artifact type: description, messages, or discovery. The Analyzer will
process all the target material (entries) of a type of artifact, before processing entries
of the next type of artifact. The processing order is: (1) discovery, (2) description, (3)
messages.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 44 of 44

• The entries in the input material, are processed in an ordered way, e.g. message
entries are processed in the order they appear in the message log file. Each entry of an
artifact type will be analyzed in sequence, which means the analysis of an entry will
be complete (a report on the profile-conformance of the entry will be appended in the
report document) before analyzing the next entry.

• When an entry is analyzed, all the test assertions which have a corresponding primary
entry type, will be considered for verification. Only those for which (1) the primary
entry has also satisfied the pre-requisite assertions, (2) the primary entry satisfies the
Context, will be processed. For each processed TA, there will be a report item in the
conformance report, for this entry.

When a test assertion is processed over an entry, it will complete with one of the following
results:

• passed
The test assertion completed the verification on the entry without detecting any
errors.

• failed
The entry in input failed the test assertion.

• warning
The entry in input failed the test assertion, but the test assertion indicated that it was
“recommended”, not “required”.  This type of failure will not affect the overall
conformance result.

• prereqFailed
The test assertion was not processed because a prerequisite test assertion failed

• notApplicable
The entry did not qualify for this test assertion, which means that although the entry
was of the type of artifact relevant to this test assertion,  it did not match the assertion
context or it failed a prerequisite test assertion. In both cases, the test assertion is not
relevant to this entry.

When summarizing the overall result of a test assertion over a set of entries, all individual
entry results will be counted for each of the above outcomes, in the conformance report.
Another case may occur, where no entry of the expected type was provided for this test
assertion (e.g. no WSDL file was provided to the analyzer for a test assertion relating to
WSDL.)

• missingInput
The test assertion was not processed due to a lack of entries of the expected type. (i.e.
the input required to process the test assertion was missing). This is also the case
when there was no qualified entry for the test assertion, in the specified artifacts (e.g.
a WSDL document does not contain a <types> element).



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 45 of 45

5.4 Viewing the HTML version of Test Assertion Document (TAD)
The XSL style sheet referred to by the XML processing instruction embedded at the beginning of
the TAD file, controls the rendering of the TAD in HTML format. This XML processing
instruction in XML log file appears as follows:

<?xml-stylesheet type="text/xsl" href="..\xsl\assertions.xsl"?>

The XSL style sheet referred to by “href” attribute should be accessible from the directory where
the TAD file is located. The common.xsl file referred to by assertions.xsl file should also be
appropriately accessible in order to render the TAD file in HTML format.

When using IE to view the HTML version of the TAD, it is preferred to use IE 5.5, or later
version of IE.  In order to view the TAD in HTML format using IE, just open the TAD file using
IE.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 46 of 46

6 The Profile Conformance Report

The analyzer tool produces one output file, the Conformance Report.  This file contains
the conformance report for the set of artifacts that were produced by a Web service.  This
report contains the conformance test results for the material provided as input to the
Analyzer (WSDL, message log file), with regard to the set of assertions that were to be
verified (in a Test Assertion Document, for example BasicProfile_1.1_TAD.xml).  The
conformance report also details the conformance level for each test assertion that was
processed, and may list detailed information for any error that was encountered.  The
report also contains a summary of the test assertions results.  This summary will indicate
if the artifacts related to the target Web service passed or failed the profile conformance
test.

The conformance report as produced by the Analyzer is an XML file. An XSL transform
is provided for HTML rendering, and also for computing different views of the raw data
in XML format, such as test assertion summaries, for each class of artifact.
The next section describes first the XML format of the report.
The following section comments on the HTML rendering of the report, which is the one
user, may want to consult, as a more readable document for conformance assessment.

6.1 Definitions
These definitions relate to terms that appear in the conformance report, and also help to describe
how the analyzer is processing test data.

• Artifact: General term used to designate the material used as input to the analyzer.
For the Basic Profile, there are four types of artifacts, which correspond to the
different inputs provided to the Analyzer:

o envelope: designated to the SOAP 1.1 structure that transmits the message
in a message log file.

o messages: designated to the entries in the message log file.

o description: designated to the WSDL files or parts of these.
o discovery: designated to any material represented in UDDI, not including

WSDL items

• Entry type:  Each artifact type can be further specialized into sub-types, called entry
types.

o “requestMessage” , “responseMessage” and “anyMessage” are entry types
associated with the  “messages” artifact

o “port”, “binding”, “portType”, “definitions”, “import” , “types” , “message
“  are entry types associated with the “description” artifact

o “bindingTemplate”, “tModel” are entry types associated with the
“discovery” artifact



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 47 of 47

o “requestEnvelope”, “responseEnvelope” and “anyEnvelope” are entry
types associated with the “envelope” artifact.

• Entry: An entry is an instance of an entry type, for example an HTTP request (for
“requestMessage” type), or a part of a WSDL file that describes a port binding (for
“binding” type).

6.2 Elements of a Report

The following table defines each of the elements that can be used in the conformance
report file. Attributes are shown using Xpath notation (ex. report[@name] for the “name”
attribute).

Element Description Usage
report The root element for the profile conformance report

file.
Mandatory.

report[@name] The name of the conformance report Optional

Report[@timestamp] The date and time indicating when the report was
generated.

Mandatory

analyzer This element contains information about the specific
implementation of the analyzer tool, and the options
that were used to test a Web service for conformance
to a profile.

Mandatory

analyzer[@version] The version number for the implementation of the tool.
This value contains a version and release number.  It
may also contain a major and minor number.

Mandatory

analyzer[@releaseDate] The date the tool was released. Mandatory

Implementer The organization that implemented the analyzer tool.

Note: The URI value for the location attribute , if
present in the report, contains an indication of the
analyzer version.  (date or  version number).  Here
are two examples of how this may appear in an
analyzer implementation:

http://hostname/2003/03/analyzer
http://hostname/1.0/analyzer

Mandatory

implementer[@name] The name of the organization that implemented the
tool.

Optional

implementer[@location] Web site where you can get more information on the
implementation of the tool.

Optional

environment The environment that was used to run the analyzer
tool.

Mandatory



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 48 of 48

tool.
runtime The runtime that was used by the analyzer. Mandatory

runtime[@name] Runtime name Mandatory

runtime[@version] Runtime version Mandatory

operatingSystem The operating system where the analyzer tools was
run.

Mandatory

operatingSystem[@name] Operating system name Mandatory
operatingSystem[@version] Operating system version Mandatory

xmlParser The XML parser that was used when running the
analyzer.

Mandatory

xmlParser[@name] XML parser name Mandatory

xmlParser[@version] XML parser version Mandatory

configuration The configuration options which were specified when
the analyzer was run.  Refer to the section on the
configuration file for a description of this element
and its contents.

Mandatory

artifact This element contains a reference to one of the
artifacts that is listed in the test assertion document.

Optional

artifact[@type] The type of artifact that is being analyzed.  The value
of the attribute always matches one of the valid
artifact types defined in the test assertion document.

Mandatory

artifactReference This element contains artifact reference information.
For example, if the artifact is “message”, then it  will
contain the timestamp from the message log file and
it may contain the contents of the first <wsi-
monConfig:comment> element that appears in the
monitor configuration section of the log file if it is
present.

Mandatory

artifactReference[@timestamp] The timestamp from the message log file or the date
and time for the WSDL file.

Mandatory

comment The comment element that is the first child of the
configuration element in the message log file.

Optional

entry This element contains a reference to an instance of a
type of entry that was analyzed.

Note:  The valid values for the type attribute are
given in quotes in 6.1  Definitions above.

Mandatory

entry[@type] The type of entry for the test assertion. Optional

entry[@referenceID] This attribute is optional.  When it is specified, it
includes a unique identifier for an instance of the type
of entry (an example would be an identifier for a
specific entry in a message log file). Depending on
the type of artifact, the referenceID has different

Optional



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 49 of 49

meaning (see later in this section)
messageEntry This element contains a reference to the log entry

which was the target of a test assertion.
Optional

assertionResult This element contains the result for a single
execution of a test assertion for an entry.

Mandatory

assertionResult[@id] Test assertion identifier.  This value matches the
value that is listed in the profile definition document.

Mandatory

assertionResult[@result] This attribute contains the result from the execution
of the test assertion.
The values for the result attribute have the following
meaning:

• passed
The test assertion completed its check without
detecting any errors.

• failed
The test assertion detected an error.  A
description of the error appears into the
<failureMessage> sub-element.

• warning
The test assertion failed, but the type attribute for
the test assertion indicated that it was
“recommended”, not “required”.

• notApplicable
The test assertion was not processed because it
did not match the assertion context or a
prerequisite test assertion failed.

• prereqFailed
The test assertion was not processed because a
prerequisite test assertion failed

missingInput
The test assertion was not processed due to a lack of
entries of the expected type. (i.e. the input required to
process the test assertion was missing). This is also
the case when there was no qualified entry for the test
assertion, in the specified artifacts (e.g. a WSDL
document does not contain a <types> element).

Mandatory

additionalEntryList This element contains a list of additionalEntry
elements.

Optional

additionalEntry This element contains a reference to entries in
addition to the primary entry defined within the
<entry> element which were needed to process a test
assertion.

Optional



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 50 of 50

Note:  The values for the type attribute have the same
meaning as those for the <entry> element.

additionalEntry[@type] The type of entry for the test assertion. Optional

additionalEntry[@referenc
eID]

This attribute is optional.  When it is specified, it
contains a unique identifier for an instance of the type
of entry (an example would be an identifier for an
entry in a log file).

Optional

assertionDescription The assertion description for the test assertion. Optional

failureMessage The failure message that is defined for the test
assertion.

Optional

failureDetail An optional failure detail message which is specific
to the implementation of the analyzer tool.  As an
example, this element may contain a failure detail
message (or set of messages) from an implementation
specific XML parser.

Optional

failureDetail[@referenceT
ype]

The type of entity that caused all or part of the test
assertion failure. This attribute is optional.

Optional

failureDetail[@referenceI
D]

The identifier for the entity that caused all or part of
the failure.  This attribute is optional.

Optional

summary This element is the container for the conformance
report summary.

Optional

summary[@result] The values for the result attribute have the following
meaning:
• passed

The result attribute will contain a value of
“passed” only if all of the processed test
assertions were successful.  The result value will
be “passed” even when some test assertions are
not processed because the input options indicated
that they should be ignored.

• failed
If at least one individual execution of a test
assertion failed, then this attribute will have a
value of “failed”.

Mandatory

analyzerFailure When a failure occurs that causes the analyzer tool to
terminate before it has processed all of the test
assertions, this element is used to indicate the source
of the error.  This element contains at least one
<failureDetail> elements as a sub-element.  The <
failureDetail > element indicates the source of the
error, and contains instructions on how to correct the
error.

Optional



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 51 of 51

6.3 Example of Conformance Report in XML Format
The following figure (Figure 8) contains an example of a profile conformance report
XML file, as produced by the Analyzer.

Note:  This example does not contain a complete conformance report.  Most of the test
assertion results have been left out.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="../common/xsl/report.xsl" type="text/xsl" ?>
<report name="WS-I Basic Profile Conformance Draft Report. This is a prerelease
version and no statement can be made from this report on WS-I conformance."

timestamp="2004-11-10T09:11:48.455"
    xmlns="http://www.ws-i.org/testing/2004/07/report/"

xmlns:wsi-report="http://www.ws-i.org/testing/2004/07/report/"
xmlns:wsi-log="http://www.ws-i.org/testing/2003/03/log/"

    xmlns:wsi-analyzerConfig="http://www.ws-i.org/testing/2004/07/analyzerConfig/"
    xmlns:wsi-monConfig="http://www.ws-i.org/testing/2003/03/monitorConfig/"

xmlns:wsi-assertions="http://www.ws-i.org/testing/2004/07/assertions/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<analyzer version="1.1" releaseDate="2004-11-10">
<implementer name="Web Services Interoperability Organization"

location="http://www.ws-i.org/testing/2003/03/Analyzer.html"/>
<environment>

<runtime name="Java(TM) 2 Runtime Environment, Standard Edition"
version="1.4.2"/>

<operatingSystem name="Windows XP" version="5.1"/>
<xmlParser name="Apache Xerces" version="XML4J 4.3.3"/>

</environment>
<wsi-analyzerConfig:configuration>

<wsi-analyzerConfig:verbose>false</wsi-analyzerConfig:verbose>
<wsi-analyzerConfig:assertionResults type="all" messageEntry="true"

assertionDescription="false" failureMessage="true" failureDetail="true"/>
<wsi-analyzerConfig:reportFile replace="true" location="report.xml">

<wsi-analyzerConfig:addStyleSheet href="../common/xsl/report.xsl"
type="text/xsl" />

</wsi-analyzerConfig:reportFile>
<wsi-analyzerConfig:testAssertionsFile>

          ../common/profiles/ SSBP10_BP11_TAD.xml
        </wsi-analyzerConfig:testAssertionsFile>
        <wsi-analyzerConfig:wsdlReference>
       <wsi-analyzerConfig:logFile>log.xml</wsi-analyzerConfig:logFile>
       <wsi-analyzerConfig:wsdlElement type="port" namespace="http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2002-08/RetailerService.wsdl"



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 52 of 52

parentElementName="RetailerService">LocalIBMRetailerPort</wsi-
analyzerConfig:wsdlElement>

<wsi-analyzerConfig:wsdlURI>samples/RetailerService.wsdl</wsi-
analyzerConfig:wsdlURI>

</wsi-analyzerConfig:wsdlReference>
</wsi-analyzerConfig:configuration>

</analyzer>

<artifact type="discovery">
<entry type="[discovery]" >

      <assertionResult id="BP3001" result="missingInput"/>
<assertionResult id="BP3002" result="missingInput"/>
<assertionResult id="BP3003" result="missingInput"/>

</entry>
</artifact>

<artifact type="description">
<entry type="definitions" referenceID="file:samples/RetailerService.wsdl">

<assertionResult id="BP2703" result="passed/">
</entry>
<entry type="definitions" referenceID="http://www.ws-

i.org/SampleApplications/SupplyChainManagement/2002-08/Retailer.wsdl">

       <assertionResult id="BP2703" result="passed"/>
</entry>
<entry type="definitions" referenceID="http://www.ws-

i.org/SampleApplications/SupplyChainManagement/2002-08/Configuration.wsdl">
<assertionResult id="BP2703" result="passed"/>

</entry>
<entry type="binding" referenceID="http://www.ws-

i.org/SampleApplications/SupplyChainManagement/2002-
08/Retailer.wsdl:RetailerSoapBinding">

<assertionResult id="BP2019" result="notApplicable"/>
<assertionResult id="BP2012" result="notApplicable/">
<assertionResult id="BP2020" result="passed"/>
<assertionResult id="BP2021" result="passed"/>
<assertionResult id="BP2022" result="passed"/>
<assertionResult id="BP2404" result="passed"/>
<assertionResult id="BP2013" result="passed"/>
<assertionResult id="BP2017" result="passed"/>
<assertionResult id="SSBP2402" result="passed"/>

</entry>
    <entry type="portType" referenceID="http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2002-
08/Retailer.wsdl:RetailerPortType">
      <assertionResult id="BP2010" result="passed"/>
    </entry>



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 53 of 53

<entry type="operation" referenceID="getCatalog"
parentElementName="RetailerService">

<assertionResult id="BP2208" result="passed/">
</entry>
<entry type="operation" referenceID="submitOrder"

parentElementName="RetailerService">
<assertionResult id="BP2208" result="passed"/>

</entry>
</artifact>

<artifact type="message">
<artifactReference timestamp="2004-11-09T16:06:03.605Z">
<wsi-monConfig:comment>This configuration file is used to test the WS-I sample

applications.</wsi-monConfig:comment>
</artifactReference>
<entry type="requestMessage" referenceID="19">

<wsi-log:messageEntry xsi:type="wsi-log:httpMessageEntry" ID="19"
conversationID="1" type="request" timestamp="2004-11-09T14:20:51.234Z">

<wsi-log:messageContent>[…message content…]</wsi-log:messageContent>
<wsi-log:senderHostAndPort>127.0.0.1:3666</wsi-log:senderHostAndPort>
<wsi-log:receiverHostAndPort>localhost:6080</wsi-log:receiverHostAndPort>
<wsi-log:httpHeaders>POST /Retailer/services/Retailer HTTP/1.0

Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.0
Host: localhost:6080
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 3446

</wsi-log:httpHeaders>
</wsi-log:messageEntry>

<assertionResult id="BP1002" result="passed"/>
<assertionResult id="BP1001" result="warning">

<failureMessage xml:lang="en">Message is not sent using
HTTP/1.1.</failureMessage>

<failureDetail xml:lang="en">POST /Retailer/services/Retailer HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.0
Host: localhost:6080
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: &quot;&quot;
Content-Length: 3446
        </failureDetail>



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 54 of 54

</assertionResult>
<assertionResult id="SSBP5100" result="passed"/>

    </entry>
      <!-- Other message entry results go here. -->
  </artifact>

  <artifact type="envelope">
<artifactReference timestamp="2004-11-09T16:06:03.605Z">
<wsi-monConfig:comment>This configuration file is used to test the WS-I sample

applications.</wsi-monConfig:comment>
</artifactReference>
<entry type="requestEnvelope" referenceID="19">

<wsi-log:messageEntry xsi:type="wsi-log:httpMessageEntry" ID="19"
conversationID="1" type="request" timestamp="2004-11-09T14:20:51.234Z">

        <wsi-log:messageContent>[…message content…]</wsi-log:messageContent>
</wsi-log:messageEntry>
<assertionResult id="BP1201" result="passed">

      <assertionResult id="BP1601" result="passed"/>
      <assertionResult id="BP1701" result="passed"/>
      <assertionResult id="BP1308" result="passed"/>
      <assertionResult id="BP4109" result="notApplicable"/>
      <assertionResult id="SSBP1601" result="passed"/>
      <assertionResult id="SSBP9704" result="passed"/>
    </entry>
    <!-- Other envelope entry results go here. -->
  </artifact>

<summary result="passed">
</summary>

</report>

Figure 8. Example of Profile Conformance Report.

How to interpret the ReferenceID attribute in the Entry element of a report

• discovery
For an entry type of bindingTemplate, the referenceID value is the bindingTemplate key.  If the
entry type is tModel, then the referenceID is a tModel key.

• description
For this artifact, the referenceID value will vary based on the entry type value for the port and
operation entry types, the referenceID value is the value of the “name” attribute on the element for
the entry instance.  For the binding, portType, and message entry types, the referenceID value is
the QName for the element associated with the entry instance. When the entry type is definitions,
the referenceID value is the location of the WSDL document. For an entry type of import, the
referenceID value is the value from the namespace attribute on the <import> element.  For the



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 55 of 55

types entry type, the referenceID value is the location of the WSDL document with “-Types”
appended to it.

• message
The referenceID value is always the entry identifier for the message log entry.

• envelope
The referenceID value is the entry identifier for the message log entry.

Failure Detail Message Content

The test assertions in the Test Assertion Document may define the type of content for the
<failureDetail> element.  The actual content of the <failureDetail> element is implementation
specific.  Also, when a test assertion has one or more additional entry types and the entry instance is
not available when the analyzer is running, then the <failureDetail> element will contain the following
text:  “Additional entry missing”.

6.4 Conformance Report In HTML Format
The following samples are extracted from a sample conformance report after HTML
rendering, as produced by the XSL transform.

Note: When using IE to view your report, you should use IE 5.5, or preferably IE 6.0.
 Simply opening your XML file with IE should be sufficient, as the xsl file (report.xsl) is
automatically referred. The common.xsl file must also be accessible.

The general result of the analysis is provided at the beginning of the report (Figure 9):

Summary
Result failed

Figure 9 – Summary line of a conformance report.

The above example illustrates an overall summary result of a conformance test. The possible
values are:

• Passed: The result of processing the set of test assertions enabled in the Analyzer (see
the Test Assertion Document) was positive. This means that each entry (of any of the
three artifact types) passed all the relevant test assertions.  Another way to state this
is: for each test assertion that was enabled in the Analyzer, all the relevant or
applicable artifact entries did pass, or generated at most a warning.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 56 of 56

• Failed: The result of processing the set of test assertions enabled in the Analyzer (see
the Test Assertion Document) was negative. This means at least one entry failed one
of the test assertions.

(see the previous section)

Links to each sub-section of the report are then provided in an artifact index (Figure 10):

Artifacts
discovery
description
message
envelope

Figure 10 – General Artifact Index.

The above is an index on each of the four sections of the report that relate to each of the artifact
types. In case no entry has been provided for an artifact, the referred section will be empty. The
following message will appear instead:
This artifact was not processed by the analyzer

Artifact: message

Artifact Reference:
Timestamp

2004-11-09T16:06:03.605Z

 Assertion Result Summary:
Assertion
ID Passed Failed Prerequisite

Failed Warning Not
Applicable

Missing
Input

BP1001 2 0 0 0 0

BP1002 1 0 0 1 0
BP1004 1 0 0 0 0
BP1006 1 0 0 0 0
BP1010 0 1 0 0 0
BP1101 0 0 0 0 1
BP1103 0 0 0 0 1
BP1116 1 0 0 0 0



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 57 of 57

BP4103 0 0 0 0 2
BP4104 2 0 0 0 0
BP4105 0 0 0 0 2
BP4106 0 0 0 0 1
BP4107 0 0 0 0 1
SSBP1003 2 0 0 0 0
SSBP5100 2 0 0 0 0
SSBP5101 2 0 0 0 0

Figure 11 – Test Assertion Summary Report.

The example in Figure 11 shows a test assertion summary for the “message” artifact. For each of
the test assertions that were enabled, there is a line in the summary. Each column shows one
possible outcome of the test assertion, and the number of message entries that generated such
outcome (an entry can only generate one outcome). See the previous section for the exact
meaning of each outcome. There is a color code for the test assertions:

• Green: At least one entry has passed the test assertion (column “Passed”), and no entry
generated failures or warnings. Such a test assertion can be considered verified on the set
of artifacts in input of the analyzer. (note there may be nonApplicable entries)

• Orange: Although no failure was generated, at least one entry generated a warning
(column “Warning”). This indicates that a recommended profile feature was not observed
on the entry.

• Red: At least one entry failed the test assertion (column “Failed”).  This means a profile
violation, regardless of how well other entries fared for this test assertion.

• Blue: All entries of the type of artifact targeted by this test assertion, were not qualified
(column “not Applicable”), i.e. not individually relevant to this assertion. It means that
the set of entries provided as input were not appropriate to test this profile feature. Unless
it is clear that the Web Service under test will never exercise such a feature, a more
comprehensive set of entries should be provided.

The test assertion summary table is followed by an index of all entries that have been verified.

The artifact section of the report then contains the details of these entries, what were the test
assertions applied to them, and the detailed outcome. The following example in Figure 12 shows
one such message entry, and the results for three test assertions:

Entry: 1
Reference ID Type

1 requestMessage



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 58 of 58

Message Entry:
Conversation
ID 2

Sender Host
and Port 127.0.0.1:1806

Receiver Host
and Port localhost:6080

HTTP Headers

POST /LoggingFacility/services/LoggingFacility HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.0
Host: localhost:6080
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 632

Message

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
  <logEventRequestElement xmlns="http://www.ws-
i.org/SampleApplications/SupplyChainManagement/2002-08/LoggingFacility.xsd">
   <DemoUserID>AUser-1-4</DemoUserID>
   <ServiceID>Retailer.submitOrder</ERROR>
   <EventID>UC1-5</EventID>
   <EventDescription>Order placed by ABCD999999999EFG for 605008, 605004,
605003</EventDescription>
  </logEventRequestElement>
 </soapenv:Body>
</soapenv:Envelope>

Assertion: BP1004
Result passed

Assertion: BP1002
Result failed

Failure Message The message is not sent using HTTP/1.1 or
HTTP/1.0.

Failure Detail

POST /WSITest/servlet/rpcrouter HTTP/0.9
Host: volodin:9080
Content-Type: text/xml; charset=utf-8
Content-Length: 626
SOAPAction: ""



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 59 of 59

Element Location:
  lineNumber=56

Assertion: BP1001
Result prereqFailed

Prereq Failed List BP1002

Figure 12 – Part of a Report: Detail of an Entry Analysis.

The message entry is number 1 in the log file (Reference ID), and is of type “requestMessage”.
Details of the entry are provided, as they appear in the log file. A list of test assertion reports is
then provided for this entry. In case of failure, the cause of failure is reported. If the user wants to
have more details on the test assertion that was exercised (e.g. BP1002), then s/he will access the
Test Assertion Document, which provides the details for each test assertion (both the XML and
HTML versions are available in the tool package).



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 60 of 60

7 Frequently Asked Questions (FAQ)

Question: Can testing tools certify that a Web Service is conforming to the Profile?
Answer: The tools can only verify the conformance of Web Service artifacts that are produced
during a testing session. Some artifacts belong to the definition of the Web Service (WSDL);
some others result from the observable behavior of the Web Service at run-time. It is rather
difficult to test all possible behaviors that a Web Service can exhibit, mostly because exercising
these behaviors is application-dependent and requires an application-level understanding of the
Web Service.  For these reasons, the Testing WS-I working group has not attempted to provide
certification criteria. Indeed, using certification criteria that are too general or incomplete will
not guarantee interoperability for every use case, and therefore a certification stamp would have
little meaning. Instead, the tools are intended to observe and verify the messages produced
during an interaction, possibly in a real deployment environment (because the tools are non-
intrusive). The tools can also be used at development time, to verify that Web Service definitions
are profile-conforming. The testing tools are then an indicator of conformance of a Web Service
to the Profiles selected, based on the artifacts produced. In turn, this is an indicator of
interoperability with other business partners who also have tested as conforming to the Profiles.

Question: Can testing tools verify all the requirements of a Profile?
Answer: No. A few requirements of the various WS-I profiles cannot be easily tested, and have
been left out for V1.0 of the tools. Such requirements fall into one of these categories:

• The profile requirement refers to an external specification document that is too complex
to test, for an outcome that has been prioritized as low, given current resources. An
example is the requirement on cookies which, when used, must conform to RFC2965.

• The requirement is not possible to test using the current test harness. For example,
requirements about the HTTP code value when a request has been redirected.

• The requirement is about interpretative behavior of a Web Service consumer or instance,
which exceeds the capability of the test harness, and would require more intrusive
technology, or more knowledge of the WS application and semantics.

This is another reason why the tools should be defined more as an indicator of conformance,
rather than as certification tools. However, by addressing requirements that concern the run-time
interaction between a Web Service and another party, the tools provide a powerful indicator of
the ability of this Web Service to interoperate with any external party known to also comply with
the Profile.

Question: How can we be sure that all the operations of a Web Service have been covered in the
testing?
Answer: Because the test framework – in the current version – does not include a Test Driver, a
complete coverage of all the operations will rely on the client program involved in the testing of
the Web Service, which is either ad-hoc, or is a real application in deployment over which the
test operator does not have much control. A Test Driver will require advanced parameterization
so that it can exercise the testing of all the (request-response and one-way) operations of a Web



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 61 of 61

Service, for any Web Service. Even so, such a driver may not be able to trigger an exhaustive set
of behaviors. Finally, not all ports in a Web Service may be required to be conforming.

Question: What are some practical situations where the testing tools show value to Web Services
users or vendors?
Answer: An industry may define industry-specific Web Services – e.g. purchase order
submission, request for product information - and specific usage scenarios. This industry may
require that the Web Service, when used according to these expected interaction scenarios,
exhibits a profile-conforming behavior, as verified by WS-I testing tools. In order to achieve this,
this industry will likely define a specific test driver for its Web Services. By doing so, this
industry has effectively defined an industry-specific test harness and certification criterion for
interoperability, based on the WS-I Profile. If such a Web Service passes the tests, a vendor in
this industry can claim that it is interoperable with any user application, provided that the user
also complies with the WS-I Profile, and exercises the expected usage scenarios.
Another scenario shows value for interoperability trouble shooting: a client application may fail
to interoperate with a Web Service, although both claim to be conforming to the WS-I Profile.
Because the testing tools can monitor messages from both interacting parties, the tools can be
used to diagnose a failure to interoperate, and to identify the cause: either the client application
or the Web Service may exhibit non-conforming behavior during this particular interaction. This
will help determine responsibilities.

Question: Is it acceptable for a Web Service to have some operations conforming to the Profile,
and some other not conforming?
Answer: Yes. The Profile requirements are not defined at Service level, but at a lower level,
typically at WSDL port level. Some requirements are about operations, or bindings. A Web
Service may have some of its ports using the profile-conforming SOAP binding, some other port
using a non-conforming SOAP binding, and some ports using a non-SOAP binding. Yet, some
business users may only be interested in interoperating with these ports that are Profile-
conforming. Therefore the testing tools will be able to assess the conformance of a Web Service
at port level. This will simply require exercising this port only, during a monitoring session. (As
well as targeting this port only when testing the WSDL file.)

Question: Will the WS-I Test Framework also support functional testing of the Web Service?
Answer: This is outside of the scope of conformance testing to the WS-I Profile. Such testing
would involve knowledge of the application semantics that is specific to each Web Service. The
Monitor developed by the Test working group could however be reused – for example by the
Sample Application working group – to provide the message capture necessary to such testing.

Question: Are there some restrictions in using the testing tools?
Answer: This version of the Monitor will not handle secure connections. In particular, the
current version of the Monitor will not handle SSL. This does not preclude one from using SSL
with the WS-I Profile, but SSL traffic cannot be captured in the current version of Monitor. To
add SSL capability to the Monitor, the tool would have to be coded to handle SSL handshakes as
well as to hold its own server certificate. SSL is specifically designed to thwart man-in-the-
middle attacks, which the current design of the monitor requires.



© Copyright 2002-2004 by the Web Services-Interoperability Organization and Certain of its Members.  All rights reserved.
Page 62 of 62

Acknowledgements
For the Java version of the tools:

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/); (c) 1999 The Apache Software Foundation. All rights reserved. THE
APACHE SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THE APACHE SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

http://www.apache.org/

